The representation of land surface processes in hydrological and climatic models critically depends on the soil water characteristics curve (SWCC) that defines the plant availability and water storage in the vadose zone. Despite the availability of SWCC datasets in the literature, significant efforts are required to harmonize reported data before SWCC parameters can be determined and implemented in modeling applications. In this work, a total of 15,259 SWCCs from 2,702 sites were assembled from published literature, harmonized, and quality-checked. The assembled SWCC data provide a global soil hydraulic properties (GSHP) database. Parameters of the van Genuchten (vG) SWCC model were estimated from the data using the R package 'soilhypfit'. In many cases, information on the wet- or dry-end of the SWCC measurements were missing, and we used pedotransfer functions (PTFs) to estimate saturated and residual water contents. The new database quantifies the differences of SWCCs across climatic regions and can be used to create global maps of soil hydraulic properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314379 | PMC |
http://dx.doi.org/10.1038/s41597-022-01481-5 | DOI Listing |
Plants (Basel)
January 2025
State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China.
Plants respond to environmental changes by altering the anatomical structure of the xylem and its hydraulic properties. While numerous studies have explored the effects of individual environmental factors on crops, the combined interactions of these factors remain underexplored. As climate change intensifies, the occurrence of salt stress is becoming more frequent, alongside a rise in atmospheric CO concentration.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
College of Science, Australia National University, Canberra, ACT 2600, Australia.
Civil and geotechnical researchers are searching for economical alternatives to replace traditional soil stabilizers such as cement, which have negative impacts on the environment. Chitosan biopolymer has shown its capacity to efficiently minimize soil erosion, reduce hydraulic conductivity, and adsorb heavy metals in soil that is contaminated. This research used unconfined compression strength (UCS) to investigate the impact of chitosan content, long-term strength assessment, acid concentration, and temperature on the improvement of soil strength.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China.
Water pipelines in water diversion projects can leak, leading to soil deformation and ground subsidence, necessitating research into soil deformation monitoring technology. This study conducted model tests to monitor soil deformation around leaking buried water pipelines using distributed fiber optic strain sensing (DFOSS) technology based on optical frequency domain reflectometry (OFDR). By arranging strain measurement fibers in a pipe-soil model, we investigated how leak location, leak size, pipe burial depth, and water flow velocity affect soil strain field monitoring results.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Heilongjiang Transportation Information and Science Research Center, Harbin 150080, China.
The degradation of concrete caused by sulfate attack poses a significant challenge to its durability. Using nanomaterials to enhance the mechanical and durability properties of concrete is a promising solution. A study of the durability of nano-alumina (NA)-modified concrete by sulfate erosion was carried out.
View Article and Find Full Text PDFSci Rep
January 2025
College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province, China.
The unsaturated hydraulic conductivity (K) is one of the most important properties for evaluating moisture and gas migration in soil. However, the precise measurement of K in the laboratory often requires considerable time and economic costs. Currently, the most commonly used method to calculate K is to obtain it from the soil-water characteristic curve (SWCC) and saturated hydraulic conductivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!