Objective: To develop a prediction model and illustrate the practical potential of personalisation of treatment decisions between app-based treatment and care as usual for urinary incontinence (UI).

Design: A prediction model study using data from a pragmatic, randomised controlled, non-inferiority trial.

Setting: Dutch primary care from 2015, with social media included from 2017. Enrolment ended on July 2018.

Participants: Adult women were eligible if they had ≥2 episodes of UI per week, access to mobile apps and wanted treatment. Of the 350 screened women, 262 were eligible and randomised to app-based treatment or care as usual; 195 (74%) attended follow-up.

Predictors: Literature review and expert opinion identified 13 candidate predictors, categorised into two groups: Prognostic factors (independent of treatment type), such as UI severity, postmenopausal state, vaginal births, general physical health status, pelvic floor muscle function and body mass index; and modifiers (dependent on treatment type), such as age, UI type and duration, impact on quality of life, previous physical therapy, recruitment method and educational level.

Main Outcome Measure: Primary outcome was symptom severity after a 4-month follow-up period, measured by the International Consultation on Incontinence Questionnaire the Urinary Incontinence Short Form. Prognostic factors and modifiers were combined into a final prediction model. For each participant, we then predicted treatment outcomes and calculated a Personalised Advantage Index (PAI).

Results: Baseline UI severity (prognostic) and age, educational level and impact on quality of life (modifiers) independently affected treatment effect of eHealth. The mean PAI was 0.99±0.79 points, being of clinical relevance in 21% of individuals. Applying the PAI also significantly improved treatment outcomes at the group level.

Conclusions: Personalising treatment choice can support treatment decision making between eHealth and care as usual through the practical application of prediction modelling. Concerning eHealth for UI, this could facilitate the choice between app-based treatment and care as usual.

Trial Registration Number: NL4948t.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9328108PMC
http://dx.doi.org/10.1136/bmjopen-2021-051827DOI Listing

Publication Analysis

Top Keywords

prediction model
16
urinary incontinence
12
treatment
12
app-based treatment
12
treatment care
12
care usual
12
model study
8
personalised advantage
8
prognostic factors
8
treatment type
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!