Carotenoid esterification is a new target for cereal biofortification since esterification increases both accumulation and stability of carotenoids. A xanthophyll acyl transferase is responsible for carotenoid esterification in the endosperm of wheat and related cereals. In this chapter we describe the procedures for transferring the carotenoid esterification attribute into wheat using the wild barley Hordeum chilense as donor of the esterification trait, the outline of the breeding program and the protocols for marker assisted selection and the analysis of carotenoids in grain. Biofortified cereals with increased lutein ester content will help to reduce the risk of developing age-related macular degeneration in human populations with limited access to other dietary sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2021.09.010 | DOI Listing |
Int J Cosmet Sci
August 2024
AVR Consulting, Northwich, UK.
Lecithin:retinol acyltransferase (LRAT) is the main enzyme catalysing the esterification of retinol to retinyl esters and, hence, is of central importance for retinol homeostasis. As retinol, by its metabolite retinoic acid, stimulates fibroblasts to synthesize collagen fibres and inhibits collagen-degrading enzymes, the inhibition of LRAT presents an intriguing strategy for anti-ageing ingredients by increasing the available retinol in the skin. Here, we synthesized several derivatives mimicking natural lecithin substrates as potential LRAT inhibitors.
View Article and Find Full Text PDFMol Biol Rep
July 2024
College of Architecture and Planning, Fujian University of Technology, Fuzhou, 350118, China.
Carotenoids, natural tetraterpenoids found abundantly in plants, contribute to the diverse colors of plant non-photosynthetic tissues and provide fragrance through their cleavage products, which also play crucial roles in plant growth and development. Understanding the synthesis, degradation, and storage pathways of carotenoids and identifying regulatory factors represents a significant strategy for enhancing plant quality. Chromoplasts serve as the primary plastids responsible for carotenoid accumulation, and their differentiation is linked to the levels of carotenoids, rendering them a subject of substantial research interest.
View Article and Find Full Text PDFJ Agric Food Chem
June 2024
School of Food Science and Engineering, Hainan University, Haikou 570228, China.
Astaxanthin (AST), mainly found in algae and shrimp, is a liposoluble ketone carotenoid with a wide range of biological activities and is commonly used in healthcare interventions and cosmetics. AST has a long chain of conjugated double bonds with hydroxyl and ketone groups at both ends, enabling it to form astaxanthin esters (AST-Es) through esterification with fatty acids. The fatty acid structure of AST plays a key role in the stability, antioxidant activity, and bioavailability of AST-Es.
View Article and Find Full Text PDFUltrason Sonochem
July 2024
Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China. Electronic address:
A novel approach to ultrasound-assisted Pickering interfacial biocatalysis (PIB) has been proposed and implemented for the efficient enzymatic transesterification production of vitamin A fatty acid esters. This is the first instance of exploiting the synergistic effect of ultrasound and the bifunctional modification of enzyme supports to accelerate biocatalytic performance in PIB systems. The optimal conditions were determined to be ultrasound power of 70 W, on/off time of 5 s/5 s, substrate molar ratio of 1:1, enzyme addition of 2 %, and a volume ratio of n-hexane to PBS of 3:1, a temperature of 40 °C, and a time of 30 min.
View Article and Find Full Text PDFDrug Metab Dispos
April 2024
Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington (L.C.C., N.I.) and Department of Pharmaceutical Sciences, University of Kentucky, College of Pharmacy, Lexington, Kentucky (L.C.C.)
Hepatic stellate cells (HSCs) are the major site of vitamin A (retinol) esterification and subsequent storage as retinyl esters within lipid droplets. However, retinyl esters become depleted in many pathophysiological states, including acute and chronic liver injuries. Recently, using a liver slice culture system as a model of acute liver injury and fibrogenesis, a time-dependent increase and decrease in the apparent formation of the bioactive retinoid all--retinoic acid (RA) and retinyl palmitate was measured, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!