Microbe-plant partnership in phytoremediation involves a synergistic interaction that leads to degradation of contaminants. The identification and characterization of these microorganisms is fundamental in environmental management. This study is aimed at investigating the influence of Glycine max and Zea mays on microbial make-up and differentiation of soil bacterial and fungal isolates in crude oil contaminated soil. We employed conventional technique of microbial isolation and gene sequencing to evaluate the microbial composition in crude oil contaminated soil. The microorganisms were isolated from crude oil contaminated soil (0%, 4%, 8%) and were identified using 16S rRNA gene (for bacteria) and Internal Transcribed Spacer (ITS) gene (for fungi). We observed a change in the microbial cell density with respect to treatment conditions implying a shift in microbial dynamics to total hydrocarbon utilizing bacteria as the dominant microbes. The sequence data revealed five bacteria strain; Klebsiella aerogenes strain 77, Klebsiella aerogenes strain UISO178, Salmonella enterica strain ABUH7, Klebsiella aerogenes strain M242 and Enterobacter sp. NCCP-607 and three fungi strains; Galactomyces geotrichum strain CBS, Aspergillus niger strain YMCHA73 and Trichoderma virens isolate A701. Annotation analysis using FGENESB and gene scan revealed proteins involved in various metabolic processes and hydrocarbon utilization. GHOSTKOLA output revealed several genetic elements and pathways such as DnaA, PYG, mrcA, environmental, cellular and genetic information processing and degradation enhancers. Our findings show that G. max and Z. mays in association with bacteria can enhance ecosystem restoration of crude oil contaminated soil.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314210 | PMC |
http://dx.doi.org/10.5620/eaht.2022008 | DOI Listing |
Chemosphere
January 2025
Department of Agricultural Machinery Engineering, University of Tehran, Iran.
Soil oil pollution is a major environmental issue, especially in oil-producing nations, as it threatens the health of plants, animals, and humans. While bioremediation has been extensively utilized as a cost-effective method for restoring oil-contaminated soil, its environmental impact has garnered relatively little attention. Researchers often concentrate on reducing pollutant concentrations below permissible limits to restore soil quality.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India.
Surface water chemistry of the River Ganga at Varanasi was analyzed at 10 locations over 3 years (2019-2021) across pre-monsoon, monsoon, and post-monsoon seasons. The study aimed to assess water parameters using principal component analysis (PCA), calculate the water quality index (WQI), determine processes governing water chemistry, evaluate irrigation suitability, and estimate non-carcinogenic health risks. The physical parameters measured included pH (8.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Engineering Profile, Satbayev University, Satbayev St. 22a, 050013, Almaty, Kazakhstan.
Several mechanisms were postulated to reduce drilling problems, improve hole cleaning characteristics, and keep the bit in good condition for the second usage. This study was conducted on Majnoon Field in southeastern Iraq to optimize the bit and drilling parameters. The results indicated that the 16" SFD75D bit proved the preferred bit for both vertical and deviated wells due to its directional capabilities.
View Article and Find Full Text PDFSci Rep
January 2025
Beijing Gilface Technology Co., Ltd., Beijing, 100012, China.
In order to solve the problem of logging calibration without a free pipe in the process of acoustic variable density logging and the subjective problem of the free pipe calibration method, this paper studies an attenuation rate calibration method based on acoustic variable density logging. Using the developed acoustic wave probe response relationship device and the acoustic wave probe calibration device, the response consistency of the receiving probe of the acoustic wave instrument and the frequency of the transmitting probe can be calibrated in the laboratory, and the response consistency and frequency calibration coefficient can be obtained. Through this coefficient, the acoustic wave attenuation rate can be derived.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, Bonn, D-53115, Germany; Institute for Advanced Simulation (IAS-4), Forschungszentrum Jülich, Jülich, D-52425, Germany; Center for Advanced Simulation and Analytics (CASA), Forschungszentrum Jülich, Jülich, D-52425, Germany; Tbilisi State University, Tbilisi, 0186, Georgia; Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!