This study adopted the combination of activated sludge treatment and catalytic ozonation technology to efficiently remove the high concentration of ammonia nitrogen from landfill leachate. Through optimizing the parameters continuously, the COD, NH-N, UV and colority respectively descended to 417.75 ± 6.72 mg/L, 9.77 mg/L, 1.98 ± 0.04 and 40 times, and 3D fluorescence also reduced significantly within 14 days. Target genes of AOB-amoA, nxrA, napA, nirS and nosZ analysis indicated that ammonia-oxidizing bacteria, nitrated bacteria, and denitrifying bacteria played a key role on nitrogen removal, aerobic denitrifying bacteria was dominated especially. The nitrogen removal process was as follows: catalytic ozonation converted nitrogen-containing organic matter into NH-N, then NH-N was converted into NO-N and NO-N with the action of ammonia oxidation, nitrification and catalytic ozonation. Finally, the denitrification microorganisms transformed NO-N or NO-N to N. Therefore, this coupled process realized the nitrogen removal effectively from landfill leachate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127668DOI Listing

Publication Analysis

Top Keywords

catalytic ozonation
16
nitrogen removal
16
landfill leachate
12
activated sludge
8
sludge treatment
8
treatment catalytic
8
high concentration
8
concentration ammonia
8
ammonia nitrogen
8
denitrifying bacteria
8

Similar Publications

Clay-catalyzed ozonation of Norfloxacin - Effects of metal cation and degradation rate on aqueous media toxicity towards Lemna minor.

Chemosphere

January 2025

Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8, Canada; École de technologie supérieure, Montréal (Québec), Canada, H3C 1K3. Electronic address:

Article Synopsis
  • Norfloxacin was ozonized in clay suspensions to study its toxicity on Lemna minor, which helps assess antibiotic impact in environments with clay.
  • The study found that norfloxacin causes toxicity in Lemna minor through oxidative stress, worsened by ozonation, affecting growth and chlorophyll levels.
  • Results indicate that the type of clay catalyst and the oxidation process influence the toxicity outcomes, revealing the potential formation of more harmful byproducts from the antibiotic.
View Article and Find Full Text PDF

Development, analysis, and effectiveness of an F-C-MgO/rGOP catalyst for the degradation of atrazine using ozonation process: Synergistic effect, mechanism, and toxicity assessment.

J Environ Manage

January 2025

Department of Chemistry, College of Science and Humanites at Al-Quway'iyahl, Shaqra University, Saudi Arabia. Electronic address:

This study considered the effects of fluoride, MgO, sucrose, and rGO on the characteristics of the fluoride-carbon-MgO/rGO predicted (F-C-MgO/rGOP) catalyst and its effectiveness in the catalytic ozonation process (COP) for atrazine elimination from aqueous solutions. Using a mixture design, the catalyst composition was optimized to 13.6% sucrose, 50% Mg (OH)2, 25% NaF, and 11.

View Article and Find Full Text PDF

Combined Catalytic Conversion of NOx and VOCs: Present Status and Prospects.

Materials (Basel)

December 2024

School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.

This article presents a comprehensive examination of the combined catalytic conversion technology for nitrogen oxides (NOx) and volatile organic compounds (VOCs), which are the primary factors contributing to the formation of photochemical smog, ozone, and PM2.5. These pollutants present a significant threat to air quality and human health.

View Article and Find Full Text PDF

Ground-level ozone (O) can infiltrate indoor environments, severely impacting the environment and human health. Moisture-induced catalyst deactivation is a major challenge in catalytic ozone removal. MOF-template-derived heterojunctions supported by carbon materials can prevent chemisorption of water vapor at active sites.

View Article and Find Full Text PDF

Cu-Doped MnO Catalysts for Effective Fruit Preservation via Ozone Synergistic Catalytic Oxidation.

Foods

December 2024

State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Developing and implementing technologies that can significantly reduce food loss during storage and transport are of paramount importance. Ozone synergistic catalytic oxidation (OSCO) technology has been developed, which sterilizes bacteria and viruses on the surface of food and degrades ethylene released during fruit storage through the active oxygen produced by the catalytic decomposition of ozone. Herein, we report the hydrothermal synthesis of MnO with distinct phase compositions and nanostructures through simply varying the reaction temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!