Identifying native-like protein-ligand complexes (PLCs) from an abundance of docking decoys is critical for large-scale virtual drug screening in early-stage drug discovery lead searching efforts. Providing reliable prediction is still a challenge for most current affinity predicting models because of a lack of non-binding data during model training, lost critical physical-chemical features, and difficulties in learning abstract information with limited neural layers. In this work, we proposed a deep learning model, DeepBindBC, for classifying putative ligands as binding or non-binding. Our model incorporates information on non-binding interactions, making it more suitable for real applications. ResNet model architecture and more detailed atom type representation guarantee implicit features can be learned more accurately. Here, we show that DeepBindBC outperforms Autodock Vina, Pafnucy, and DLSCORE for three DUD.E testing sets. Moreover, DeepBindBC identified a novel human pancreatic α-amylase binder validated by a fluorescence spectral experiment (K = 1.0 × 10 M). Furthermore, DeepBindBC can be used as a core component of a hybrid virtual screening pipeline that incorporating many other complementary methods, such as DFCNN, Autodock Vina docking, and pocket molecular dynamics simulation. Additionally, an online web server based on the model is available at http://cbblab.siat.ac.cn/DeepBindBC/index.php for the user's convenience. Our model and the web server provide alternative tools in the early steps of drug discovery by providing accurate identification of native-like PLCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2022.07.009DOI Listing

Publication Analysis

Top Keywords

deep learning
8
identifying native-like
8
native-like protein-ligand
8
protein-ligand complexes
8
virtual screening
8
drug discovery
8
autodock vina
8
web server
8
model
6
deepbindbc
5

Similar Publications

Learning the language of antibody hypervariability.

Proc Natl Acad Sci U S A

January 2025

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.

Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.

View Article and Find Full Text PDF

Dissolution of CO in water followed by the subsequent hydrolysis reactions is of great importance to the global carbon cycle, and carbon capture and storage. Despite numerous previous studies, the reactions are still not fully understood at the atomistic scale. Here, we combined ab initio molecular dynamics (AIMD) simulations with Markov state models to elucidate the reaction mechanisms and kinetics of CO in supercritical water both in the bulk and nanoconfined states.

View Article and Find Full Text PDF

Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.

View Article and Find Full Text PDF

The role of chromatin state in intron retention: A case study in leveraging large scale deep learning models.

PLoS Comput Biol

January 2025

Department of Computer Science, Colorado State University, Fort Collins, Colorado, United States of America.

Complex deep learning models trained on very large datasets have become key enabling tools for current research in natural language processing and computer vision. By providing pre-trained models that can be fine-tuned for specific applications, they enable researchers to create accurate models with minimal effort and computational resources. Large scale genomics deep learning models come in two flavors: the first are large language models of DNA sequences trained in a self-supervised fashion, similar to the corresponding natural language models; the second are supervised learning models that leverage large scale genomics datasets from ENCODE and other sources.

View Article and Find Full Text PDF

As the global economy expands, waterway transportation has become increasingly crucial to the logistics sector. This growth presents both significant challenges and opportunities for enhancing the accuracy of ship detection and tracking through the application of artificial intelligence. This article introduces a multi-object tracking system designed for unmanned aerial vehicles (UAVs), utilizing the YOLOv7 and Deep SORT algorithms for detection and tracking, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!