A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Short-term repeatability and long-term reproducibility of quantitative MR imaging biomarkers in a single centre longitudinal study. | LitMetric

Short-term repeatability and long-term reproducibility of quantitative MR imaging biomarkers in a single centre longitudinal study.

Neuroimage

Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada; Calgary Image Processing and Analysis Centre (CIPAC), Foothills Medical Centre, Calgary, Alberta, Canada.

Published: October 2022

Quantitative imaging biomarkers (QIBs) can be defined as objective measures that are sensitive and specific to changes in tissue physiology. Provided the acquired QIBs are not affected by scanner changes, they could play an important role in disease diagnosis, prognosis, management, and treatment monitoring. The precision of selected QIBs was assessed from data collected on a 3-T scanner in four healthy participants over a 5-year period. Inevitable scanner changes and acquisition protocol revisions occurred during this time. Standard and custom processing pipelines were used to calculate regional brain volume, cortical thickness, T2, T2*, quantitative susceptibility, cerebral blood flow, axial, radial and mean diffusivity, peak width of skeletonized mean diffusivity, and fractional anisotropy from the acquired images. Coefficient of variation (CoV) and intra-class correlation (ICC) indices were determined in the short-term (i.e., repeatable over three acquisitions within 4 weeks) and in the long-term (i.e., reproducible over four acquisition sessions in 5 years). Precision indices varied based on acquisition technique, processing pipeline, and anatomical region. Good repeatability (average CoV=2.40% and ICC=0.78) and reproducibility (average CoV=8.86 % and ICC=0.72) were found over all QIBs. The best performance indices were obtained for diffusion derived biomarkers (CoV∼0.96% and ICCs=0.87); conversely, the poorest indices were found for the cerebral blood flow biomarker (CoV>10% and ICC<0.5). These results demonstrate that changes in protocol, along with hardware and software upgrades, did not affect the estimates of the selected biomarkers and their precision. Further characterization of the QIB is necessary to understand meaningful changes in the biomarkers in longitudinal studies of normal brain aging and translation to clinical research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2022.119488DOI Listing

Publication Analysis

Top Keywords

quantitative imaging
8
imaging biomarkers
8
scanner changes
8
cerebral blood
8
blood flow
8
short-term repeatability
4
repeatability long-term
4
long-term reproducibility
4
reproducibility quantitative
4
biomarkers single
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!