Traumatic brain injury (TBI) is known to impair synaptic function, and subsequently contribute to observed cognitive deficits. Retinoic Acid (RA) signaling modulates expression of synaptic plasticity proteins and is involved in hippocampal learning and memory. All trans-retinoic acid (ATRA), a metabolite of Vitamin A, has been identified as a potential pharmacotherapeutic for other neurological disorders due to this role. This study conducted an ATRA dose response to determine its therapeutic effects on cognitive behaviors and expression of hippocampal markers of synaptic plasticity and RA signaling proteins after experimental TBI. Under isoflurane anesthesia, adult male Sprague Dawley rats received either controlled cortical impact (CCI, 2.5 mm deformation, 4 m/s) or control surgery. Animals received daily intraperitoneal injection of 0.5, 1, 5, or 10 mg/kg of ATRA or vehicle for 2 weeks. Animals underwent motor and spatial learning and memory testing. Hippocampal expression of synaptic plasticity proteins neurogranin (Ng), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluA1 sub-unit, as well as RA signaling proteins STRA6, ADLH1a1, CYP26A1 and CYP26B1 were evaluated by western blot at 2-weeks post-injury. ATRA treatment significantly recovered Ng synaptic protein expression, while having no effect on motor performance, spatial learning, and memory, and GluA1 expression after TBI. RA signaling protein expression is unchanged 2 weeks after TBI. Overall, ATRA administration after TBI showed limited therapeutic benefits compared to the vehicle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2022.07.021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!