Resting and postpradial serum cholecystokinin concentrations and evaluation of the effect of seeing and/or smelling food on serum cholecystokinin and bile acid concentrations in healthy dogs.

Res Vet Sci

Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States of America.

Published: December 2022

AI Article Synopsis

  • Serum bile acids levels typically rise after eating, but some dogs have higher levels before eating, which is paradoxical.
  • The study aimed to assess whether serum cholecystokinin (CCK) levels relate to these odd bile acid results and if seeing or smelling food affects them.
  • Results showed that while CCK levels increased after eating in some dogs, there was no strong link between CCK and atypical bile acid concentrations, and visual or olfactory food stimuli didn't significantly impact bile acids.

Article Abstract

Serum bile acids concentrations rise postprandially. However, some dogs show paradoxical serum bile acids results with higher pre-prandial than post-prandial concentrations. The aim of this study was to evaluate serum cholecystokinin (CCK) concentrations and determine whether they correspond to paradoxical serum bile acids concentrations. In addition, seeing and smelling food was investigated as a possible cause for paradoxical serum bile acids results. Eight healthy dogs owned by volunteers enrolled in this experimental study. Food was withheld from the dogs for 12 h with great care not to expose them to any sight or smell of food. Blood samples were collected at 0, 30, 60, 120, 180, 240, 480 and 720 min after feeding. Food was then withheld again for 24 h, and blood samples were collected at 0, 30, 60, 120, 180, 240, 480 and 720 min after seeing and smelling food. After feeding, serum CCK concentrations increased, but paradoxical serum CCK concentrations were observed in some of dogs, but only one of those had also paradoxical serum bile acids concentrations. After seeing and smelling food, serum CCK and serum bile acids concentrations did not significantly increase. In conclusion, paradoxical serum CCK concentrations can occur in some healthy dogs after feeding. However, no correlation with paradoxical serum bile acids concentrations was found. Seeing or smelling food are unlikely causes for paradoxical serum bile acids concentrations. Additional studies are warranted to further evaluate the relationship of serum CCK and bile acids concentrations in healthy dogs and dogs with gastrointestinal disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rvsc.2022.07.010DOI Listing

Publication Analysis

Top Keywords

bile acids
36
serum bile
32
paradoxical serum
32
acids concentrations
28
smelling food
20
serum cck
20
serum
16
healthy dogs
16
cck concentrations
16
concentrations
14

Similar Publications

This primigravid pregnant woman had a new diagnosis of primary biliary cholangitis (PBC) that was treated with a combination of ursodeoxycholic acid (UDCA) and bezafibrate. Pregnancy may unmask underlying chronic hepatic disorders in susceptible women and, in some cases, the associated abnormalities of liver function or increased serum bile acids (hypercholanaemia) can result in significant fetal and maternal risk. Maternal pruritus, with associated sleep deprivation, may cause considerable distress.

View Article and Find Full Text PDF

To understand the colonization status of Group B Streptococcus (GBS) in the reproductive tract of pregnant women in the Linyi region, the drug resistance, genotype distribution, and molecular epidemiological characteristics of GBS, and to explore the high-risk factors for GBS infection in late-stage pregnant women. A total of 3269 pregnant women at 35-37 weeks of gestation who visited the Obstetrics Department of Linyi Maternal and Child Health Hospital from January 2019 to December 2021 were selected as the study subjects. Vaginal and rectal swabs were collected for GBS culture.

View Article and Find Full Text PDF

Characterization and functionality of 1003 isolated from chicken cecum against .

Front Cell Infect Microbiol

December 2024

Postdoctoral Research Workstation, Heilongjiang Academy of Agricultural Sciences, Harbin, China.

Lactic acid bacteria are widely regarded as safe alternatives to antibiotics in livestock and poultry farming and have probiotic potential. () is a prominent component of pigeon crop microbiota; however, its function is unknown. In this study, a strain of 1003 from pigeon cecum was identified by combining whole genome sequencing and phenotypic analysis, and its safety and probiotic properties were studied.

View Article and Find Full Text PDF

Microbiota-related metabolites correlated with the severity of COVID-19 patients.

Hepatobiliary Pancreat Dis Int

December 2024

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Jinan Microecological Biomedicine Shandong Laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310000, China. Electronic address:

Background: Coronavirus disease 2019 (COVID-19) is a global pandemic with high mortality, and the treatment options for the severe patients remain limited. Previous studies reported the altered gut microbiota in severe COVID-19. But there are no comprehensive data on the role of microbial metabolites in COVID-19 patients.

View Article and Find Full Text PDF

Beyond Metabolic Messengers: Bile Acids and TGR5 as Pharmacotherapeutic Intervention for Psychiatric Disorders.

Pharmacol Res

December 2024

Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan. Electronic address:

Psychiatric disorders pose a significant global health challenge, exacerbated by the COVID-19 pandemic and insufficiently addressed by the current treatments. This review explores the emerging role of bile acids and the TGR5 receptor in the pathophysiology of psychiatric conditions, emphasizing their signaling within the gut-brain axis. We detail the synthesis and systemic functions of bile acids, their transformation by gut microbiota, and their impact across various neuropsychiatric disorders, including major depressive disorder, general anxiety disorder, schizophrenia, autism spectrum disorder, and bipolar disorder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!