Despite the recent explosion of machine learning applied to medical data, very few studies have examined algorithmic bias in any meaningful manner, comparing across algorithms, databases, and assessment metrics. In this study, we compared the biases in sex, age, and race of 56 algorithms on over 130,000 electrocardiograms (ECGs) using several metrics and propose a machine learning model design to reduce bias. Participants of the 2021 PhysioNet Challenge designed and implemented working, open-source algorithms to identify clinical diagnosis from 2- lead ECG recordings. We grouped the data from the training, validation, and test datasets by sex (male vs female), age (binned by decade), and race (Asian, Black, White, and Other) whenever possible. We computed recording-wise accuracy, area under the receiver operating characteristic curve (AUROC), area under the precision recall curve (AUPRC), F-measure, and the Challenge Score for each of the 56 algorithms. The Mann-Whitney U and the Kruskal-Wallis tests assessed the performance differences of algorithms across these demographic groups. Group trends revealed similar values for the AUROC, AUPRC, and F-measure for both male and female groups across the training, validation, and test sets. However, recording-wise accuracies were 20% higher (p < 0.01) and the Challenge Score 12% lower (p = 0.02) for female subjects on the test set. AUPRC, F-measure, and the Challenge Score increased with age, while recording-wise accuracy and AUROC decreased with age. The results were similar for the training and test sets, but only recording-wise accuracy (12% decrease per decade, p < 0.01), Challenge Score (1% increase per decade, p < 0.01), and AUROC (1% decrease per decade, p < 0.01) were statistically different on the test set. We observed similar AUROC, AUPRC, Challenge Score, and F-measure values across the different race categories. But, recording-wise accuracies were significantly lower for Black subjects and higher for Asian subjects on the training (31% difference, p < 0.01) and test (39% difference, p < 0.01) sets. A top performing model was then retrained using an additional constraint which simultaneously minimized differences in performance across sex, race and age. This resulted in a modest reduction in performance, with a significant reduction in bias. This work provides a demonstration that biases manifest as a function of model architecture, population, cost function and optimization metric, all of which should be closely examined in any model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486543 | PMC |
http://dx.doi.org/10.1016/j.jelectrocard.2022.07.007 | DOI Listing |
Biodegradation
December 2024
Department of Civil engineering, Islamic Azad university, Mashhad Branch, Iran.
The widespread use of pesticides, including diazinon, poses an increased risk of environmental pollution and detrimental effects on biodiversity, food security, and water resources. In this study, we investigated the impact of Potentially Toxic Elements (PTE) including Zn, Cd, V, and Mn on the degradation of diazinon in three different soils. We investigated the capability and performance of four machine learning models to predict residual pesticide concentration, including adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), radial basis function (RBF), and multi-layer perceptron (MLP).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Jiangsu, China.
Nanometric solid solution alloys are utilized in a broad range of fields, including catalysis, energy storage, medical application, and sensor technology. Unfortunately, the synthesis of these alloys becomes increasingly challenging as the disparity between the metal elements grows, due to differences in atomic sizes, melting points, and chemical affinities. This study utilized a data-driven approach incorporating sample balancing enhancement techniques and multilayer perceptron (MLP) algorithms to improve the model's ability to handle imbalanced data, significantly boosting the efficiency of experimental parameter optimization.
View Article and Find Full Text PDFJ Am Med Inform Assoc
December 2024
AI for Health Institute, Washington University in St Louis, St Louis, MO 63130, United States.
Objective: Early detection of surgical complications allows for timely therapy and proactive risk mitigation. Machine learning (ML) can be leveraged to identify and predict patient risks for postoperative complications. We developed and validated the effectiveness of predicting postoperative complications using a novel surgical Variational Autoencoder (surgVAE) that uncovers intrinsic patterns via cross-task and cross-cohort presentation learning.
View Article and Find Full Text PDFBiometrics
October 2024
RAND Corporation, Pittsburgh, PA 15213, United States.
Health care decisions are increasingly informed by clinical decision support algorithms, but these algorithms may perpetuate or increase racial and ethnic disparities in access to and quality of health care. Further complicating the problem, clinical data often have missing or poor quality racial and ethnic information, which can lead to misleading assessments of algorithmic bias. We present novel statistical methods that allow for the use of probabilities of racial/ethnic group membership in assessments of algorithm performance and quantify the statistical bias that results from error in these imputed group probabilities.
View Article and Find Full Text PDFIran Biomed J
December 2024
Student Research Committee , Department of Nursing, Khalkhal University of Medical Sciences, Khalkhal, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!