Alginate-based nanocarriers are propitious vehicles used for the delivery of bioactive compounds (bioactives). In this area, calcium alginate and sodium alginate are the most promising wall materials because they are nontoxic, comparatively cheap, simple in production, biocompatible and biodegradable. In this review, we have highlighted different alginate-based nanocarriers such as nanoparticles, nanofibers, nanoemulsions, nanocomplexes, and nanohydrogels; also entrapment of different bioactives within alginate nanocarriers and their bioavailability in the gastric environment has been comprehensively discussed. Being biopolymers, alginates can be exploited as emulsifiers/ encapsulants for entrapment and delivery of different bioactives such as vitamins, minerals, essential fatty acids, peptides, essential oils, bioactive oils, polyphenols and carotenoids. Furthermore, the use of alginate-based nanocarriers in combination with other polysaccharides/ emulsifiers was recognized as the most effective and favorable approach for the protection, delivery and sustained release of bioactives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cis.2022.102744 | DOI Listing |
Curr Pharm Des
October 2024
Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN-603103, India.
Introduction: As cancer therapy progresses, challenges remain due to the inherent drawbacks of conventional treatments such as chemotherapy, gene therapy, radiation therapy, and surgical removal. Moreover, due to their associated side effects, conventional treatments affect both cancerous and normal cells, making photodynamic therapy (PDT) an attractive alternative.
Methods: As a result of its minimal toxicity, exceptional specificity, and non-invasive characteristics, PDT represents an innovative and highly promising cancer treatment strategy using photosensitizers (PSs) and precise wavelength excitation light to introduce reactive oxygen species (ROS) in the vicinity of cancer cells.
Int J Biol Macromol
August 2024
Facultad de Agronomía, Campus Ciencias Agropecuarias; Universidad Autónoma de Nuevo León; C.P. 66050, General Escobedo, Nuevo León, Mexico. Electronic address:
Evaluation of the controlled release of ciprofloxacin (CIP.HCl) and the antibacterial efficacy of alginate (ALG)-based nanocarriers constitute the primary objectives of the current work. Herein, ALG-based nano-structures were prepared by the co-precipitation method and thoroughly analyzed using different characterization techniques, i.
View Article and Find Full Text PDFInt J Biol Macromol
April 2024
School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, People's Republic of China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230601, People's Republic of China. Electronic address:
Rapeseed-derived peptides (RPPs) can maintain the homeostasis of human blood glucose by inhibiting Dipeptidyl Peptidase-IV (DPP-IV) and activating the calcium-sensing receptor (CaSR). However, these peptides are susceptible to hydrolysis in the gastrointestinal tract. To enhance the therapeutic potential of these peptides, we developed a chitosan/sodium alginate-based nanocarrier to encapsulate two RPP variants, rapeseed-derived cruciferin peptide (RCPP) and rapeseed-derived napin peptide (RNPP).
View Article and Find Full Text PDFPhotochem Photobiol Sci
April 2024
Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física (DQIAQF), Universidad de Buenos Aires, Buenos Aires, Argentina.
Nanosized alginate-based particles (NAPs) were obtained in a one-pot solvent-free synthesis procedure, achieving the design of a biocompatible nanocarrier for the encapsulation of IbM6 antimicrobial peptide (IbM6). IbM6 is integrated in the nascent nanosized hydrogel self-assembly guided by electrostatic interactions and by weak interactions, typical of soft matter. The formation of the nanogel is a dynamic and complex process, which presents an interesting temporal evolution.
View Article and Find Full Text PDFSci Rep
November 2023
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hamadan University of Medical Sciences, Hamedan, Iran.
In recent years, several nanocarrier synthesis methods have been developed. In cancer therapy, the use of smart nanocarriers is of interest. Smart nanocarriers respond to their environment and can release their cargo in a controlled manner under the action of internal or external stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!