Nonradical Fenton-like catalysis offers opportunities to overcome the low efficiency and secondary pollution limitations of existing advanced oxidation decontamination technologies, but realizing this on transition metal spinel oxide catalysts remains challenging due to insufficient understanding of their catalytic mechanisms. Here, we explore the origins of catalytic selectivity of Fe-Mn spinel oxide and identify electron delocalization of the surface metal active site as the key driver of its nonradical catalysis. Through fine-tuning the crystal geometry to trigger Fe-Mn superexchange interaction at the spinel octahedra, ZnFeMnO with high-degree electron delocalization of the Mn-O unit was created to enable near 100% nonradical activation of peroxymonosulfate (PMS) at unprecedented utilization efficiency. The resulting surface-bound PMS* complex can efficiently oxidize electron-rich pollutants with extraordinary degradation activity, selectivity, and good environmental robustness to favor water decontamination applications. Our work provides a molecule-level understanding of the catalytic selectivity and bimetallic interactions of Fe-Mn spinel oxides, which may guide the design of low-cost spinel oxides for more selective and efficient decontamination applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9351537 | PMC |
http://dx.doi.org/10.1073/pnas.2201607119 | DOI Listing |
Phys Chem Chem Phys
January 2025
Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 17-1200-841, Ecuador.
A theoretical description of various [AeX] (Ae = Be-Ba, X = F-I) systems, some of which have been reported in the literature to bear an unusual quadruple bond between the metal and the halogen, is provided based on both (i) the localization of the Fermi hole and (ii) the topological analysis of the one-electron density. Insights into the bond order of various [AeX] systems are inferred on the basis of the number of electrons localized in the bond basin, the topology of the Fermi hole information computed along the bond axis, and the delocalization index. The results suggest that the [AeX] molecules present a bond with attributes closer to a classical dative bond than to a multiple one, being characterized by large stabilization due to the electrostatic interaction between the polarized metal and the halogen anion.
View Article and Find Full Text PDFMater Horiz
January 2025
Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
The availability of clean water is fundamental for maintaining sustainable environments and human ecosystems. Capacitive deionization offers a cost-effective, environmentally friendly, and energy-efficient solution to meet the rising demand for clean water. Electrode materials based on pseudocapacitive adsorption have attracted significant attention in capacitive deionization due to their relatively high desalination capacity.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy Northwestern University, Evanston, Illinois 60208-3113, USA.
Organic donor-acceptor (D-A) cocrystals are gaining attention for their potential applications in optoelectronic devices. This study explores the dynamics of charge transfer (CT) and triplet exciton formation in various D-A cocrystals. By examining a series of D-A cocrystals composed of coronene (COR), peri-xanthenoxanthene (PXX), and perylene (PER) donors paired with N,N-bis(3'-pentyl)perylene-3,4:9,10-bis(dicarboximide) (PDI), naphthalene-1,4:5,8-tetracarboxy-dianhydride (NDA), or pyrene-4,5,9,10-tetraone (PTO) acceptors, using transient absorption microscopy and time-resolved electron paramagnetic resonance spectroscopy, we find that the strength of the CT interaction influences the nature and yield of triplet excitons produced by CT state recombination.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
Aromaticity is one of the most classical concepts in the field of modern chemistry and has been employed to explain and design substances with special stability. Although the knowledge about Hückel's and Baird's rules has been well established, the understanding of Möbius aromaticity remains extremely limited. In this letter, by employing density functional theory (DFT) calculations, we demonstrated that the four-membered VIB transition metal (TM) carbide clusters possess a highly stable open-shell planar tetrameric structure and exhibit double Möbius aromaticity, which was evidenced by analyzing multiple aromaticity criteria, including the electronic, magnetic, and energetic indicators.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
The delocalization length of charge carriers in organic semiconductors influences their mobility and is an important factor in the design of functional materials. Here, we have studied the radical anions of a series of linear and cyclic butadiyne-linked porphyrin oligomers using CW-EPR, H Mims ENDOR and NIR/MIR spectroelectrochemistry together with DFT calculations and multiscale molecular modeling. Low-temperature hyperfine EPR spectroscopy and optical data show that polarons are delocalized nonuniformly over about four porphyrins with most of the spin density on just two units even in the cyclic structures, in which all porphyrin sites are identical.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!