Inspired by crystal structures, we designed and achieved a catalyst-free Michael reaction for the preparation of an N1-alkyl pyrazole in a high yield (>90%) with excellent regioselectivity (N1/N2 > 99.9:1). The scope of this protocol has been extended to accomplish the first general regioselective N1-alkylation of 1-pyrazoles to give di-, tri-, and tetra-substituted pyrazoles in a single step. The resulting pyrazoles bear versatile functional groups such as bromo, ester, nitro, and nitrile, offering opportunities for late-stage functionalization. This efficient methodology will have an impact on drug discovery, as several Food and Drug Administration-approved drugs are pyrazole derivatives. A working hypothesis for the regioselectivity is proposed. X-ray crystal structures of the products that highlight the attractive interactions are discussed. This report provides a rare source for the further elucidation of the attractive interactions because the isomeric ratios and the crystal structures are directly related.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.2c00980 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!