A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of Machine Learning Algorithms and Explainability Techniques to Detect Hearing Loss From a Speech-in-Noise Screening Test. | LitMetric

Purpose: The aim of this study was to analyze the performance of multivariate machine learning (ML) models applied to a speech-in-noise hearing screening test and investigate the contribution of the measured features toward hearing loss detection using explainability techniques.

Method: Seven different ML techniques, including transparent (i.e., decision tree and logistic regression) and opaque (e.g., random forest) models, were trained and evaluated on a data set including 215 tested ears (99 with hearing loss of mild degree or higher and 116 with no hearing loss). Post hoc explainability techniques were applied to highlight the role of each feature in predicting hearing loss.

Results: Random forest (accuracy = .85, sensitivity = .86, specificity = .85, precision = .84) performed, on average, better than decision tree (accuracy = .82, sensitivity = .84, specificity = .80, precision = .79). Support vector machine, logistic regression, and gradient boosting had similar performance as random forest. According to post hoc explainability analysis on models generated using random forest, the features with the highest relevance in predicting hearing loss were age, number and percentage of correct responses, and average reaction time, whereas the total test time had the lowest relevance.

Conclusions: This study demonstrates that a multivariate approach can help detect hearing loss with satisfactory performance. Further research on a bigger sample and using more complex ML algorithms and explainability techniques is needed to fully investigate the role of input features (including additional features such as risk factors and individual responses to low-/high-frequency stimuli) in predicting hearing loss.

Download full-text PDF

Source
http://dx.doi.org/10.1044/2022_AJA-21-00194DOI Listing

Publication Analysis

Top Keywords

hearing loss
28
random forest
16
explainability techniques
12
predicting hearing
12
hearing
9
machine learning
8
algorithms explainability
8
detect hearing
8
screening test
8
decision tree
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!