The immobilization of TiO nanoparticles on graphene acid (GA), a conductive graphene derivative densely functionalized with COOH groups, is presented. The interaction between the carboxyl groups of the surface and the titanium precursor leads to a controlled TiO heterogenization on the nanosheet according to microscopic and spectroscopic characterizations. Electronic communication shared among graphene and semiconductor nanoparticles shifts the hybrid material optical features toward less energetic radiation but maintaining the conductivity. Therefore, GA-TiO is employed as heterogeneous photocatalyst for the synthesis of 2,5-disubstituted 1,3,4-oxadiazoles using ketoacids and hydrazides as substrates. The material presented enhanced photoactivity compared to bare TiO, being able to yield a large structural variety of oxadiazoles in reaction times as fast as 1 h with full recyclability and stability. The carbocatalytic character of GA is the responsible for the substrates condensation and the GA-TiO light interaction ability is able to photocatalyze the cyclization to the final 1,3,4-oxadiazoles, demonstrating the optimal performance of this multifunctional photocatalytic material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827454PMC
http://dx.doi.org/10.1021/acsami.2c07880DOI Listing

Publication Analysis

Top Keywords

graphene acid
8
heterogeneous photocatalyst
8
photocatalyst synthesis
8
graphene
4
tio
4
acid tio
4
tio nanohybrid
4
nanohybrid multifunctional
4
multifunctional heterogeneous
4
synthesis 134-oxadiazoles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!