To increase our basic understanding of the ecology and evolution of conjugative plasmids, we need reliable estimates of their rate of transfer between bacterial cells. Current assays to measure transfer rate are based on deterministic modeling frameworks. However, some cell numbers in these assays can be very small, making estimates that rely on these numbers prone to noise. Here, we take a different approach to estimate plasmid transfer rate, which explicitly embraces this noise. Inspired by the classic fluctuation analysis of Luria and Delbrück, our method is grounded in a stochastic modeling framework. In addition to capturing the random nature of plasmid conjugation, our new methodology, the Luria-Delbrück method ("LDM"), can be used on a diverse set of bacterial systems, including cases for which current approaches are inaccurate. A notable example involves plasmid transfer between different strains or species where the rate that one type of cell donates the plasmid is not equal to the rate at which the other cell type donates. Asymmetry in these rates has the potential to bias or constrain current transfer estimates, thereby limiting our capabilities for estimating transfer in microbial communities. In contrast, the LDM overcomes obstacles of traditional methods by avoiding restrictive assumptions about growth and transfer rates for each population within the assay. Using stochastic simulations and experiments, we show that the LDM has high accuracy and precision for estimation of transfer rates compared to the most widely used methods, which can produce estimates that differ from the LDM estimate by orders of magnitude.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352209PMC
http://dx.doi.org/10.1371/journal.pbio.3001732DOI Listing

Publication Analysis

Top Keywords

transfer rates
12
estimating transfer
8
fluctuation analysis
8
transfer
8
transfer rate
8
plasmid transfer
8
rate
5
rates
4
rates bacterial
4
bacterial plasmids
4

Similar Publications

The application of spermatogonial stem cells (SSC) will be more effective and feasible following the successful cryopreservation and transfer of SSCs in livestock. Like other cells, SSCs are also sensitive to cryoinjury; hence composition of the cryomedia and freezing protocols need to be optimized. The present study aims to optimising the best freezing rates by minimising the ice crystallization and dehydration effect in order to maximize the post-thaw SSCs survivability and stemness characteristics.

View Article and Find Full Text PDF

Residence time of particles in indoor surface networks.

J Hazard Mater

January 2025

Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, PR China; Faculty of Architecture, The University of Hong Kong, Hong Kong, PR China. Electronic address:

Infectious microbes can spread rapidly from fomites (contaminated surfaces) via hand touch, with prolonged residence time on surfaces increasing transmission risk by extending exposure periods and/or involving more susceptible individuals. Existing studies have focused on decreasing microbial contamination, but not on the need for rapid removal from surface systems. This study introduces residence time as the time that a microbe spends within the surface system.

View Article and Find Full Text PDF

Enhanced brain tumor detection and segmentation using densely connected convolutional networks with stacking ensemble learning.

Comput Biol Med

January 2025

Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:

- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.

View Article and Find Full Text PDF

A randomized control trial to compare Quiet Eye training efficacy to traditional technical training with undergraduate student nurses' peripheral intravenous cannulation performance: a protocol.

Br J Nurs

January 2025

Department of Psychology, Faculty of Arts, University of Calgary, Alberta, Canada; Community Health Sciences, Faculty of Medicine, University of Calgary, Alberta, Canada; Ward of the 21st Century, Cumming School of Medicine, University of Calgary, Alberta, Canada.

Introduction: Peripheral intravenous cannulation (PIVC) is a common and complex procedure with low first-attempt success rates, causing patient suffering and increased healthcare costs. Quiet Eye (QE) training, a gaze-focused approach, has shown promise in improving procedural PIVC skills. We will examine the effectiveness of traditional technical training (TT) and QE training (QET) on student nurse PIVC performance.

View Article and Find Full Text PDF

A Noncatalytic Cysteine Residue Modulates Cobalamin Reactivity in the Human B Processing Enzyme CblC.

Biochemistry

January 2025

Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany.

Human CblC catalyzes the indispensable processing of dietary vitamin B by the removal of its β-axial ligand and an either one- or two-electron reduction of its cobalt center to yield cob(II)alamin and cob(I)alamin, respectively. Human CblC possesses five cysteine residues of an unknown function. We hypothesized that Cys149, conserved in mammals, tunes the CblC reactivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!