An electronic transition-based bare bones particle swarm optimization (ETBBPSO) algorithm is proposed in this paper. The ETBBPSO is designed to present high precision results for high dimensional single-objective optimization problems. Particles in the ETBBPSO are divided into different orbits. A transition operator is proposed to enhance the global search ability of ETBBPSO. The transition behavior of particles gives the swarm more chance to escape from local minimums. In addition, an orbit merge operator is proposed in this paper. An orbit with low search ability will be merged by an orbit with high search ability. Extensive experiments with CEC2014 and CEC2020 are evaluated with ETBBPSO. Four famous population-based algorithms are also selected in the control group. Experimental results prove that ETBBPSO can present high precision results for high dimensional single-objective optimization problems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312387PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271925PLOS

Publication Analysis

Top Keywords

high dimensional
12
optimization problems
12
search ability
12
electronic transition-based
8
transition-based bare
8
bare bones
8
bones particle
8
particle swarm
8
swarm optimization
8
proposed paper
8

Similar Publications

Echinococcosis is a zoonotic infectious disease that poses a significant threat to the health of individuals living in rural regions. While vaccination represents a potential strategy for disease prevention, there is currently no effective vaccine available for humans to prevent cystic echinococcosis (CE). This study aimed to design a novel multi-epitope vaccine (MEV) against Echinococcus granulosus for human use, employing immunoinformatics methods.

View Article and Find Full Text PDF

Track Deflection Monitoring for Railway Construction Based on Dynamic Brillouin Optical Time-Domain Reflectometry.

Sensors (Basel)

December 2024

Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510630, China.

Real-time online monitoring of track deformation during railway construction is crucial for ensuring the safe operation of trains. However, existing monitoring technologies struggle to effectively monitor both static and dynamic events, often resulting in high false alarm rates. This paper presents a monitoring technology for track deformation during railway construction based on dynamic Brillouin optical time-domain reflectometry (Dy-BOTDR), which effectively meets requirements in the monitoring of both static and dynamic events of track deformation.

View Article and Find Full Text PDF

Advancements in Raman light sheet microscopy have provided a powerful, non-invasive, marker-free method for imaging complex 3D biological structures, such as cell cultures and spheroids. By combining 3D tomograms made by Rayleigh scattering, Raman scattering, and fluorescence detection, this modality captures complementary spatial and molecular data, critical for biomedical research, histology, and drug discovery. Despite its capabilities, Raman light sheet microscopy faces inherent limitations, including low signal intensity, high noise levels, and restricted spatial resolution, which impede the visualization of fine subcellular structures.

View Article and Find Full Text PDF

Monitoring cerebral oxygenation and metabolism, using a combination of invasive and non-invasive sensors, is vital due to frequent disruptions in hemodynamic regulation across various diseases. These sensors generate continuous high-frequency data streams, including intracranial pressure (ICP) and cerebral perfusion pressure (CPP), providing real-time insights into cerebral function. Analyzing these signals is crucial for understanding complex brain processes, identifying subtle patterns, and detecting anomalies.

View Article and Find Full Text PDF

Lane Detection Based on ECBAM_ASPP Model.

Sensors (Basel)

December 2024

School of Artificial Intelligence and Computer Science, Nantong University, Nantong 226019, China.

With the growing prominence of autonomous driving, the demand for accurate and efficient lane detection has increased significantly. Beyond ensuring accuracy, achieving high detection speed is crucial to maintaining real-time performance, stability, and safety. To address this challenge, this study proposes the ECBAM_ASPP model, which integrates the Efficient Convolutional Block Attention Module (ECBAM) with the Atrous Spatial Pyramid Pooling (ASPP) module.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!