In this work, we propose the software library PyPore3D, an open source solution for data processing of large 3D/4D tomographic data sets. PyPore3D is based on the Pore3D core library, developed thanks to the collaboration between Elettra Sincrotrone (Trieste) and the University of Trieste (Italy). The Pore3D core library is built with a distinction between the User Interface and the backend filtering, segmentation, morphological processing, skeletonisation and analysis functions. The current Pore3D version relies on the closed source IDL framework to call the backend functions and enables simple scripting procedures for streamlined data processing. PyPore3D addresses this limitation by proposing a full open source solution which provides Python wrappers to the the Pore3D C library functions. The PyPore3D library allows the users to fully use the Pore3D Core Library as an open source solution under Python and Jupyter Notebooks PyPore3D is both getting rid of all the intrinsic limitations of licensed platforms (e.g., closed source and export restrictions) and adding, when needed, the flexibility of being able to integrate scientific libraries available for Python (SciPy, TensorFlow, etc.).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321761 | PMC |
http://dx.doi.org/10.3390/jimaging8070187 | DOI Listing |
Forensic Sci Med Pathol
January 2025
Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126, Bologna, Italy.
A 36-year-old woman diagnosed with complicated cholecystolithiasis underwent elective laparoscopic cholecystectomy (LC), then converted to open cholecystectomy because of a massive intraoperative bleeding. Hemostasis was performed with clipping and suturing the source of bleeding. In post-operative period, the patient suffered from persistent anemia associated with hemoperitoneum diagnosed through abdominal CT scanning, in absence of any sign of active bleeding.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Sino-Finland Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou 310052, China.
PACKMOL is a widely utilized molecular modeling tool within the computational chemistry community. However, its tremendous advantages have been impeded by the longstanding lack of a robust open-source graphical user interface (GUI) that integrates parameter settings with the visualization of molecular and geometric constraints. To address this limitation, we have developed PACKMOL-GUI, a VMD plugin that leverages the dynamic extensibility of the Tcl/Tk toolkit.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania.
The expansion of single-cell analytical techniques has empowered the exploration of diverse biological questions at the individual cells. Droplet-based single-cell RNA sequencing (scRNA-seq) methods have been particularly widely used due to their high-throughput capabilities and small reaction volumes. While commercial systems have contributed to the widespread adoption of droplet-based scRNA-seq, their relatively high cost limits the ability to profile large numbers of cells and samples.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Departmento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile.
Data analysis is a major task for Computational Chemists. The diversity of modeling tools currently available in Computational Chemistry requires the development of flexible analysis tools that can adapt to different systems and output formats. As a contribution to this need, we report the implementation of goChem, a versatile open-source library for multiscale analysis of computational chemistry data.
View Article and Find Full Text PDFBMJ Open Gastroenterol
December 2024
Department of English Language, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran.
Objectives: Our aim was to systematically review the cost-effectiveness of proton pump inhibitor (PPI) therapies and surgical interventions for gastro-oesophageal reflux disease (GORD).
Design: The study design was a systematic review of economic evaluations.
Data Sources: We searched PubMed, Embase, Scopus, and Web of Science for publications from January 1990 to March 2023.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!