Cardiovascular diseases (CVDs) are a significant burden globally and are especially prevalent in obese and/or diabetic populations. Epicardial adipose tissue (EAT) surrounding the heart has been implicated in the development of CVDs as EAT can shift from a protective to a maladaptive phenotype in diseased states. In diabetic and obese patients, an elevated EAT mass both secretes pro-fibrotic/pro-inflammatory adipokines and forms intramyocardial fibrofatty infiltrates. This narrative review considers the proposed pathophysiological roles of EAT in CVDs. Diabetes is associated with a disordered energy utilization in the heart, which promotes intramyocardial fat and structural remodeling. Fibrofatty infiltrates are associated with abnormal cardiomyocyte calcium handling and repolarization, increasing the probability of afterdepolarizations. The inflammatory phenotype also promotes lateralization of connexin (Cx) proteins, undermining unidirectional conduction. These changes are associated with conduction heterogeneity, together creating a substrate for atrial fibrillation (AF). EAT is also strongly implicated in coronary artery disease (CAD); inflammatory adipokines from peri-vascular fat can modulate intra-luminal homeostasis through an "outside-to-inside" mechanism. EAT is also a significant source of sympathetic neurotransmitters, which promote progressive diastolic dysfunction with eventual cardiac failure. Further investigations on the behavior of EAT in diabetic/obese patients with CVD could help elucidate the pathogenesis and uncover potential therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318726 | PMC |
http://dx.doi.org/10.3390/jcdd9070217 | DOI Listing |
J Biophotonics
January 2025
Department of Electrical Engineering, Columbia University, New York, New York, USA.
Epicardial catheter ablation is necessary to address ventricular tachycardia targets located far from the endocardium, but epicardial adipose tissue and coronary blood vessels can complicate ablation. We demonstrate that catheter-based near-infrared spectroscopy (NIRS) can identify these obstacles to guide ablation. Eighteen human ventricles were mapped ex vivo using NIRS catheters with optical source-detector separations (SDSs) of 0.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Cardiology Division, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E 210st, Bronx, NY, USA.
Computed tomography (CT)-derived Epicardial Adipose Tissue (EAT) is linked to cardiovascular disease outcomes. However, its role in patients undergoing Transcatheter Aortic Valve Replacement (TAVR) and the interplay with aortic stenosis (AS) cardiac damage (CD) remains unexplored. We aim to investigate the relationship between EAT characteristics, AS CD, and all-cause mortality.
View Article and Find Full Text PDFEur Heart J Cardiovasc Imaging
January 2025
National Heart Center Singapore, Singapore, Singapore.
Aims: To identify differences in CT-derived perivascular (PVAT) and epicardial adipose tissue (EAT) characteristics that may indicate inflammatory status differences between post-treatment acute myocardial infarction (AMI) and stable coronary artery disease (CAD) patients.
Methods And Results: A cohort of 205 post-AMI patients (age 59.8±9.
Curr Vasc Pharmacol
January 2025
1st Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece.
Introduction: Sodium-glucose cotransporter 2 (SGLT2) inhibitors have emerged as a groundbreaking class of antidiabetic medications renowned for their glucose-lowering effects and cardiovascular benefits. Recent studies have suggested that SGLT2 inhibitors may extend their influence beyond glycemic control to impact adipose tissue physiology, particularly within the epicardial adipose depot. Epicardial adipose tissue (EAT), an actively secretory organ surrounding the heart, has been implicated in the modulation of cardiovascular risk.
View Article and Find Full Text PDFJACC Adv
December 2024
Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
Background: Risk stratification for sudden cardiac death (SCD) in patients with nonischemic cardiomyopathy (NICM) remains challenging.
Objectives: This study aimed to investigate the impact of epicardial adipose tissue (EAT) on SCD in NICM patients.
Methods: Our study cohort included 173 consecutive patients (age 53 ± 14 years, 73% men) scheduled for primary prevention implantable cardioverter-defibrillators (ICDs) implantation who underwent preimplant cardiovascular magnetic resonance.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!