Plant-based bioactive compounds have been utilized to cure diseases caused by pathogenic microorganisms and as a substitute to reduce the side effects of chemically synthesized drugs. Therefore, in the present study, Azadirachta indica oil nanohydrogel was prepared to be utilized as an alternate source of the antimicrobial compound. The total phenolic compound in Azadirachta indica oil was quantified by chromatography analysis and revealed gallic acid (0.0076 ppm), caffeic acid (0.077 ppm), and syringic acid (0.0129 ppm). Gas chromatography−mass spectrometry analysis of Azadirachta indica oil revealed the presence of bioactive components, namely hexadecenoic acid, heptadecanoic acid, ç-linolenic acid, 9-octadecanoic acid (Z)-methyl ester, methyl-8-methyl-nonanoate, eicosanoic acid, methyl ester, and 8-octadecane3-ethyl-5-(2 ethylbutyl). The nanohydrogel showed droplet size of 104.1 nm and −19.3 mV zeta potential. The nanohydrogel showed potential antimicrobial activity against S. aureus, E. coli, and C. albicans with minimum inhibitory, bactericidal, and fungicidal concentrations ranging from 6.25 to 3.125 (µg/mL). The nanohydrogel showed a significantly (p < 0.05) higher (8.40 log CFU/mL) value for Gram-negative bacteria E. coli compared to Gram-positive S. aureus (8.34 log CFU/mL), and in the case of pathogenic fungal strain C. albicans, there was a significant (p < 0.05) reduction in log CFU/mL value (7.79−6.94). The nanohydrogel showed 50.23−82.57% inhibition in comparison to standard diclofenac sodium (59.47−92.32%). In conclusion, Azadirachta indica oil nanohydrogel possesses great potential for antimicrobial and anti-inflammatory activities and therefore can be used as an effective agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9318572PMC
http://dx.doi.org/10.3390/gels8070434DOI Listing

Publication Analysis

Top Keywords

azadirachta indica
16
indica oil
16
log cfu/ml
12
antimicrobial anti-inflammatory
8
oil nanohydrogel
8
acid
8
potential antimicrobial
8
nanohydrogel
7
oil
5
antimicrobial
4

Similar Publications

Gedunin Mitigates -Induced Skin Inflammation by Inhibiting the NF-κB Pathway.

Pharmaceuticals (Basel)

January 2025

Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.

: , a bacterium residing in hair follicles, triggers acne by inducing monocyte-mediated inflammatory cytokine production. Gedunin, a limonoid derived from (commonly known as neem), is renowned for its antifungal, antimalarial, anticancer, anti-inflammatory, and neuroprotective effects. However, its role in mitigating -induced skin inflammation remains unexplored.

View Article and Find Full Text PDF

Bioacaricides in Crop Protection-What Is the State of Play?

Insects

January 2025

Department of Agricultural, Food and Forestry Sciences, University of Palermo, Viale delle Scienze 13, Ed. 5, 90128 Palermo, Italy.

Growing demands for environmentally safe and sustainable pest management have increased interest in biopesticides as alternatives to synthetic chemical pesticides. This review presents the current status of bioacaricides, defined as commercial biopesticide products based on microorganisms (microbial acaricides) and biologically active substances of microbial, plant or animal origin (biochemicals and semiochemicals) used in crop protection against spider mites (Tetranychidae) and other plant-feeding mites. The most important microbial bioacaricides are mycopesticides, which are products manufactured from living propagules of s.

View Article and Find Full Text PDF

Extracts of plants have been used to manage various insect pests, but little information is available about how effective they are in reducing crop damage or how they affect crop yield and beneficial insects in rice. Extracts from leaves, leaves, leaves, leaves, cloves, and fruits, known to have insecticidal properties, were compared with two checks, viz., Azadirachtin 1% EC and standard insecticide Acephate 95 SG, for their efficacy against yellow stem borer (YSB), (Walk.

View Article and Find Full Text PDF

Indian traditional medicine, based on Ayurveda and Siddha, has become one of the global searches for complementary approaches to conventional interventions during the COVID-19 pandemic. This review presents the antiviral, immune-boosting, and anti-inflammatory properties of some medicinal key plants such as Tulsi (), Neem (), Ashwagandha (), Amla (), and Giloy (). Tulsi appears to inhibit viral replication, Neem increases immune cell synthesis, while Ashwagandha regulates inflammation and stress responses.

View Article and Find Full Text PDF

The effect of the aqueous extract of (AAI) on gentamicin (GEN)-induced kidney injury was investigated. The study involves 20 adult male Wistar rats (housed in four separate plastic cages) such that graded dosages of AAI were administered to the experimental group for 14 days per oral (PO) before exposure to GEN toxicity (100 mg/kg) for 1 week. At the end of the study, comparisons of some markers of renal functions, antioxidant status, and inflammatory and apoptotic markers were made between the control, GEN, and AAI-pretreated groups at < .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!