Ibuprofen is an antipyretic and analgesic drug used for the management of different inflammatory diseases, such as rheumatoid arthritis and osteoarthritis. Due to a short half-life and rapid elimination, multiple doses of ibuprofen are required in a day to maintain pharmacological action for a long duration of time. Due to multiple intakes of ibuprofen, certain severe adverse effects, such as gastric irritation, bleeding, ulcers, and abdominal pain are produced. Therefore, a system is needed which not only prolongs the release of ibuprofen but also overcomes the drug's adverse effects. Hence, the authors have synthesized chondroitin sulfate/sodium polystyrene sulfonate-co-poly(acrylic acid) hydrogels by the free radical polymerization technique for the controlled release of ibuprofen. Sol-gel, porosity, swelling, and drug release studies were performed on the fabricated hydrogel. The pH-responsive behavior of the fabricated hydrogel was determined by both swelling and drug release studies in three different pH values, i.e., pH 1.2, 4.6, and 7.4. Maximum swelling and drug release were observed at pH 7.4, as compared to pH 4.6 and 1.2. Similarly, the structural arrangement and crosslinking of the hydrogel contents were confirmed by Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) evaluated the hard and irregular surface with a few macrospores of the developed hydrogel, which may be correlated with the strong crosslinking of polymers with monomer content. Similarly, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) demonstrated the high thermal stability of the formulated hydrogel, as compared to pure polymers. A decrease in the crystallinity of chondroitin sulfate and sodium polystyrene sulfonate after crosslinking was revealed by powder X-ray diffraction (PXRD). Thus, considering the results, we can demonstrate that a developed polymeric network of hydrogel could be used as a safe, stable, and efficient carrier for the controlled release of ibuprofen.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323728 | PMC |
http://dx.doi.org/10.3390/gels8070406 | DOI Listing |
Pharmaceutics
January 2025
Programa de Posgrado en Odontología, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jose 11501-2060, Costa Rica.
Objectives: This study aimed to synthesize polylactic acid (PLA) nanofibrillar scaffolds loaded with ibuprofen (IBU) using electrospinning (ES) and air-jet spinning (AJS). The scaffolds were evaluated for their physicochemical properties, drug release profiles, and biocompatibility to assess their potential for local analgesic applications.
Methods: Solutions of 10% (/) PLA combined with IBU at concentrations of 10%, 20%, and 30% were processed into nanofibrillar membranes using ES and AJS.
Materials (Basel)
January 2025
Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
Dissolution of a poorly soluble active pharmacological substance in a drug carrier usually requires advanced techniques and production equipment. The use of novel carriers such as microemulsions, vesicles, or nanocarriers might entail various limitations concerning production cost, formulation stability, or active substance capacity. In this paper, we present a novel fumed silica-based organogel as a low-cost, simple preparation drug or cosmetic carrier with interesting rheological properties and high solubilization capacity.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22903, USA.
Osteoarthritis (OA) is a chronic disease characterized by cartilage degradation, leading to bone friction, inflammation, stiffness, pain, and reduced mobility. This study investigates the therapeutic effects of porcine-derived chondroitin sulfate sodium (CS) on OA symptoms at both cellular and animal levels. study, HTB-94 chondrocytes were treated with inflammatory stimuli and CS (10, 50, 100, and 200 μg/mL) to assess the release of inflammatory mediators and the expression of genes and proteins related to cartilage synthesis and degradation.
View Article and Find Full Text PDFBiomed Mater
January 2025
Zhejiang University School of Medicine, 1367 West Wenyi Rd, Hangzhou, 310058, CHINA.
Electrospun membranes with biomimetic fibrous structures and high specific surfaces benefit cell proliferation and tissue regeneration but are prone to cause chronic inflammation and foreign body response (FBR). To solve these problems, we herein report an approach to functionalize electrospun membranes with antibacterial and anti-inflammatory components to modulate inflammatory responses and improve implantation outcomes. Specifically, electrospun polylactic acid (PLA)/gelatin (Gel) fibers were grafted with chitosan (CS) and ibuprofen (IBU) via carbodiimide chemistry.
View Article and Find Full Text PDFGels
January 2025
Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 3000 Arlington Ave, Toledo, OH 43614, USA.
Microemulsions have been commonly used with various permeation enhancers to improve permeability through the skin. The purpose of this study was to compare the release and permeation ability of two commonly used permeation enhancers-diethylene glycol monoethyl ether (DGME) and oleyl alcohol-by the changes in oil composition, the addition of a gelling agent, and water content using ibuprofen as a model drug. Four microemulsions were formulated, selection was based on ternary phase diagrams, and physicochemical properties were evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!