The RS1 gene on Xp 22.13 encodes retinoschisin which is known to directly interact with the retinal Na/K-ATPase at the photoreceptor inner segments. Pathologic mutations in RS1 cause X-linked juvenile retinoschisis (XLRS), a hereditary retinal dystrophy in young males. To further delineate the retinoschisin-Na/K-ATPase complex, co-immunoprecipitation was performed with porcine and murine retinal lysates targeting the ATP1A3 subunit. This identified the voltage-gated potassium (Kv) channel subunits Kv2.1 and Kv8.2 as direct interaction partners of the retinal Na/K-ATPase. Colocalization of the individual components of the complex was demonstrated at the membrane of photoreceptor inner segments. We further show that retinoschisin-deficiency, a frequent consequence of molecular pathology in XLRS, causes mislocalization of the macromolecular complex during postnatal retinal development with a simultaneous reduction of Kv2.1 and Kv8.2 protein expression, while the level of retinal Na/K-ATPase expression remains unaffected. Patch-clamp analysis revealed no effect of retinoschisin-deficiency on Kv channel mediated potassium ion currents in vitro. Together, our data suggest that Kv2.1 and Kv8.2 together with retinoschisin and the retinal Na/K-ATPase are integral parts of a macromolecular complex at the photoreceptor inner segments. Defective compartmentalization of this complex due to retinoschisin-deficiency may be a crucial step in initial XLRS pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314279PMC
http://dx.doi.org/10.1007/s00018-022-04409-9DOI Listing

Publication Analysis

Top Keywords

kv21 kv82
16
inner segments
16
retinal na/k-atpase
16
photoreceptor inner
12
interaction partners
8
macromolecular complex
8
retinal
7
complex
6
na/k-atpase
5
retinoschisin novel
4

Similar Publications

Kv2 channels do not function as canonical delayed rectifiers in spinal motoneurons.

iScience

August 2024

Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.

The increased muscular force output required for some behaviors is achieved via amplification of motoneuron output via cholinergic C-bouton synapses. Work in neonatal mouse motoneurons suggested that modulation of currents mediated by post-synaptically clustered K2.1 channels is crucial to C-bouton amplification.

View Article and Find Full Text PDF
Article Synopsis
  • - Voltage-gated ion channels are crucial for maintaining membrane potential and regulating electrical signals in neurons, with voltage-gated potassium channels (K) being particularly important for neuronal excitability.
  • - High levels of reactive oxygen species (ROS) in the aging brain can impact K channels, contributing to aging and neurodegeneration, especially in conditions like Alzheimer's, Parkinson's, and Huntington's diseases.
  • - The review highlights specific K channels affected in these disorders (K1, K2.1, K3, K4, K7) and suggests that modulators of these channels may serve as potential therapeutic targets to prevent or treat neurodegenerative diseases.
View Article and Find Full Text PDF

Altered neurological and neurobehavioral phenotypes in a mouse model of the recurrent KCNB1-p.R306C voltage-sensor variant.

Neurobiol Dis

May 2024

Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA. Electronic address:

Pathogenic variants in KCNB1 are associated with a neurodevelopmental disorder spectrum that includes global developmental delays, cognitive impairment, abnormal electroencephalogram (EEG) patterns, and epilepsy with variable age of onset and severity. Additionally, there are prominent behavioral disturbances, including hyperactivity, aggression, and features of autism spectrum disorder. The most frequently identified recurrent variant is KCNB1-p.

View Article and Find Full Text PDF

The function of the smooth muscle cells lining the walls of mammalian systemic arteries and arterioles is to regulate the diameter of the vessels to control blood flow and blood pressure. Here, we describe an in silico model, which we call the 'Hernandez-Hernandez model', of electrical and Ca signaling in arterial myocytes based on new experimental data indicating sex-specific differences in male and female arterial myocytes from murine resistance arteries. The model suggests the fundamental ionic mechanisms underlying membrane potential and intracellular Ca signaling during the development of myogenic tone in arterial blood vessels.

View Article and Find Full Text PDF
Article Synopsis
  • Voltage-gated Ca1.2 and K2.1 channels in arterial myocytes are essential for muscle contraction and relaxation; K2.1 also enhances Ca1.2 clustering specifically in females.
  • Research shows that K2.1 can form small micro-clusters that grow into larger macro-clusters when a specific site (S590) is phosphorylated, with females exhibiting higher phosphorylation and clustering than males.
  • Disruption of K2.1's clustering ability affects Ca1.2 cluster size and activity, suggesting that K2.1 clustering plays a crucial, sex-specific role in regulating Ca1.2 function in arterial myocytes.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!