The Processing-body is a conserved membraneless organelle that has been implicated in the storage and/or decay of mRNAs. Although Processing-bodies have been shown to be induced by a variety of conditions, the mechanisms controlling their assembly and their precise physiological roles in eukaryotic cells are still being worked out. In this study, we find that a distinct subtype of Processing-body is induced in response to conditions that disrupt microtubule integrity in the budding yeast, Saccharomyces cerevisiae. For example, treatment with the microtubule-destabilizing agent, benomyl, led to the induction of these novel ribonucleoprotein granules. A link to microtubules had been noted previously and the observations here extend our understanding by demonstrating that the induced foci differ from traditional P-bodies in a number of significant ways. These include differences in overall granule morphology, protein composition, and the manner in which their induction is regulated. Of particular note, several key Processing-body constituents are absent from these benomyl-induced granules, including the Pat1 protein that is normally required for efficient Processing-body assembly. However, these novel ribonucleoprotein structures still contain many known Processing-body proteins and exhibit similar hallmarks of a liquid-like compartment. In all, the data suggest that the disruption of microtubule integrity leads to the formation of a novel type of Processing-body granule that may have distinct biological activities in the cell. Future work will aim to identify the biological activities of these benomyl-induced granules and to determine, in turn, whether these Processing-body-like granules have any role in the regulation of microtubule dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434292 | PMC |
http://dx.doi.org/10.1093/genetics/iyac105 | DOI Listing |
Cell Mol Life Sci
January 2025
State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
Defects in motile cilia and flagella lead to motile ciliopathies, including primary ciliary dyskinesia (PCD), which manifests as multi-organ dysfunction such as hydrocephalus, infertility, and respiratory issues. CFAP65 variants are a common cause of male infertility, but its localization and function have remained unclear. In this study, we systematically evaluated CFAP65's role using Cfap65 knockout mice and human patients with CFAP65 variants.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
January 2025
Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
Tau is a well-known microtubule-associated protein and is located in the cytoplasm of neurons, which play a crucial role in Alzheimer's diseases. Due to its preferred binding to DNA sequences found in the nucleolus and pericentromeric heterochromatin, Tau has been found within the cell nucleus, where it may be a nucleic acid-associated protein. Tau has the ability to directly interact with nuclear pore complex nucleoporins, influencing both their structural and functional integrity.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
The centrosome is the microtubule-organizing center and a crucial part of cell division. Centrosomal RNAs (cnRNAs) have been reported to enable precise spatiotemporal control of gene expression during cell division in many species. Whether and how cnRNAs exist in C.
View Article and Find Full Text PDFiScience
January 2025
Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
Cancers and neurodegenerative disorders are associated with both disrupted proteostasis and altered nuclear morphology. Determining if changes in nuclear morphology contribute to pathology requires an understanding of the underlying mechanisms, which are difficult to elucidate in cells where pleiotropic effects of altering proteostasis might indirectly influence nuclear morphology. To investigate direct effects, we studied nuclei assembled in egg extract where potentially confounding effects of transcription, translation, cell cycle progression, and actin dynamics are absent.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
Nucleoside triphosphate (NTP)-dependent protein assemblies such as microtubules and actin filaments have inspired the development of diverse chemically fueled molecular machines and active materials but their functional sophistication has yet to be matched by design. Given this challenge, we asked whether it is possible to transform a natural adenosine 5'-triphosphate (ATP)-dependent enzyme into a dissipative self-assembling system, thereby altering the structural and functional mode in which chemical energy is used. Here we report that FtsH (filamentous temperature-sensitive protease H), a hexameric ATPase involved in membrane protein degradation, can be readily engineered to form one-dimensional helical nanotubes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!