Due to the probability of decreased specificity, the practical value of performing the Xpert MTB/RIF Ultra (Xpert Ultra) assay over the Xpert assay for diagnosing pulmonary tuberculosis (TB) and rifampicin (RIF) resistance in a high TB burden setting was evaluated. Participants were recruited consecutively in three tertiary hospitals in China and allocated to the TB case detection and/or rifampicin (RIF) resistance detection group. Each sputum specimen was subjected to smear, MGIT960 liquid culture, and Xpert, and Xpert Ultra assay in parallel. Drug susceptibility testing was conducted for all recovered isolates in the RIF resistance detection group. In total, 1,079 patients were recruited to the case detection group and 450 to the RIF resistance detection group. Xpert Ultra had higher sensitivity than Xpert (92.26%, 322/349 versus 89.40%, 312/349; = 0.006), whereas the most prominent increase was identified in the smear-negative patients (83.70% versus 78.52%; = 0.039). The specificity of Xpert Ultra was slightly lower than that of Xpert (96.30%, 495/514 versus 98.25%, 505/514; = 0.055). Reclassifying trace results as negative resulted in a 4.01% loss of sensitivity (from 92.26% to 88.25%) accompanied by a 1.37% gain in specificity (from 96.30% to 97.67%). Both the sensitivity (97.64% versus 99.21%, = 0.313) and specificity (96.90% versus 97.21%, = 0.816) of Xpert Ultra and Xpert for detection RIF resistance were comparable. In conclusion, Xpert Ultra could improve the diagnosis of smear-negative pulmonary TB in contrast to the Xpert assay. A high percentage of TB history did not significantly decrease the specificity of the test, which supports the potential role of Xpert Ultra as an initial diagnostic tool for TB. Xpert Ultra is more sensitive than Xpert, especially in smear-negative TB. A high percentage of TB history in the non-TB population did not significantly affect the reliability of the assay, which supports the potential role of Xpert Ultra as an initial diagnostic tool for TB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9430854 | PMC |
http://dx.doi.org/10.1128/spectrum.00949-22 | DOI Listing |
Eur Respir J
January 2025
Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
Background: Tuberculosis (TB) remains a major cause of infectious disease mortality globally, with significant underdiagnosis perpetuating transmission. Tongue swab analysis has emerged as a promising non-invasive method for pulmonary TB diagnosis. This study evaluates the diagnostic accuracy of the TB-EASY quantitative PCR (qPCR) assay using tongue swab specimens.
View Article and Find Full Text PDFJ Clin Microbiol
December 2024
Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA.
Unlabelled: Tongue swab (TS) sampling combined with quantitative PCR (qPCR) to detect (MTB) DNA is a promising alternative to sputum testing for tuberculosis (TB) diagnosis. In prior studies, the sensitivity of tongue swabbing has usually been lower than sputum. In this study, we evaluated two strategies to improve sensitivity.
View Article and Find Full Text PDFJ Infect
December 2024
German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany; Division of Clinical Infectious Diseases, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany.
Objectives: Early detection of treatment failure is essential to improve the management of drug-resistant tuberculosis (DR-TB). We evaluated the molecular bacterial load assay (MBLA) in comparison to standard diagnostic tests for monitoring therapy of patients affected by drug-resistant TB.
Methods: The performance of MBLA in tracking treatment response in a prospective cohort of patients with pulmonary MDR/RR- and pre-XDR/XDR-TB was compared with mycobacterial culture, mycobacterial DNA detection using GeneXpert (Xpert) and microscopy detection of sputum acid-fast-bacilli.
Front Vet Sci
December 2024
SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
Animal tuberculosis (TB) has been reported in several wildlife species in the Greater Kruger Conservation Area (GKCA), South Africa. This report describes the discovery of clinical tuberculosis, caused by (), in free-ranging vervet monkeys (). The "One Health" concept is especially relevant to TB since this is a multi-host disease with zoonotic potential and is endemic in GKCA.
View Article and Find Full Text PDFTher Adv Infect Dis
December 2024
Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Campus 2, avenida La Fontana 750, La Molina, Lima, Peru.
Background: Molecular tests have contributed to reducing the mortality rate through early and accurate diagnosis of tuberculosis (TB). This is due to their low processing complexity and diagnostic accuracy superior to conventional methods.
Objective: To evaluate the diagnostic performance of Cobas MTB and Logix Smart MTB compared to Xpert MTB/RIF Ultra for pulmonary tuberculosis (PTB) and extrapulmonary tuberculosis (EPTB).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!