A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Construction of a Human Aorta Smooth Muscle Cell Organ-On-A-Chip Model for Recapitulating Biomechanical Strain in the Aortic Wall. | LitMetric

AI Article Synopsis

  • Conventional two-dimensional cell cultures and animal models struggle to effectively replicate human thoracic aortic aneurysm and dissection (TAAD), leading to a gap in understanding that can hinder drug discovery.
  • Recent advancements in microfabrication and microfluidics have enabled the creation of organoids-on-a-chip that better simulate the biomechanical environment of human tissues.
  • The newly developed human aorta smooth muscle cell organ-on-a-chip (HASMC-OOC) model accurately mimics the mechanical strain experienced in human aortic smooth muscle cells, offering a promising alternative for studying TAAD and identifying potential therapies.

Article Abstract

Conventional two-dimensional cell culture techniques and animal models have been used in the study of human thoracic aortic aneurysm and dissection (TAAD). However, human TAAD sometimes cannot be characterized by animal models. There is an apparent species gap between clinical human studies and animal experiments that may hinder the discovery of therapeutic drugs. In contrast, the conventional cell culture model is unable to simulate in vivo biomechanical stimuli. To this end, microfabrication and microfluidic techniques have developed greatly in recent years, providing novel techniques for establishing organoids-on-a-chip models that replicate the biomechanical microenvironment. In this study, a human aorta smooth muscle cell organ-on-a-chip (HASMC-OOC) model was developed to simulate the pathophysiological parameters of aortic biomechanics, including the amplitude and frequency of cyclic strain experienced by human aortic smooth muscle cells (HASMCs) that play a vital role in TAAD. In this model, the morphology of HASMCs became elongated in shape, aligned perpendicularly to the strain direction, and presented a more contractile phenotype under strain conditions than under static conventional conditions. This was consistent with the cell orientation and phenotype in native human aortic walls. Additionally, using bicuspid aortic valve-related TAAD (BAV-TAAD) and tricuspid aortic valve-related TAAD (TAV-TAAD) patient-derived primary HASMCs, we established BAV-TAAD and TAV-TAAD disease models, which replicate HASMC characteristics in TAAD. The HASMC-OOC model provides a novel in vitro platform that is complementary to animal models for further exploring the pathogenesis of TAAD and discovering therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.3791/64122DOI Listing

Publication Analysis

Top Keywords

smooth muscle
12
animal models
12
human aorta
8
aorta smooth
8
muscle cell
8
cell organ-on-a-chip
8
cell culture
8
study human
8
models replicate
8
hasmc-ooc model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!