Toward high-performance refractive index sensor using single Au nanoplate-on-mirror nanocavity.

Nanoscale

Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.

Published: August 2022

AI Article Synopsis

  • Refractive index sensors utilizing localized surface plasmon resonance (LSPR) face challenges like low sensitivity and small figure of merit (FOM) due to decay length and radiation damping issues.
  • A new plasmonic nanocavity sensor is developed using a hexagonal gold (Au) nanoplate over an ultrasmooth Au film, which enhances sensitivity via strong coupling and a plasmonic gap mode.
  • This configuration leads to reduced radiative damping and significantly improved FOM, achieving a record-high value of 11.2 RIU for LSPR sensing in a single nanostructure.

Article Abstract

Refractive index sensors based on the localized surface plasmon resonance (LSPR) have emerged as powerful tools in various chemosensing and biosensing applications. However, owing to their limited decay length and strong radiation damping, LSPR sensors always suffer from low sensitivity and small figure of merit (FOM). Here, we fabricate a plasmonic nanocavity sensor consisting of a hexagonal Au nanoplate positioned over an ultrasmooth Au film. The strong coupling between the nanoplate and the lower metal film allows for the formation of a plasmonic gap mode that enhances the interaction of the local field with the ambient glycerol solution to increase the sensitivity. Meanwhile, the plasmonic gap mode has a trait of an antiphase charge oscillation in the gap region, imparting a strongly reduced radiative damping and a subsequently promoted FOM. The performance of our proposed refractive index sensor is further boosted by decreasing the gap size of the nanocavity, yielding an outstanding FOM of 11.2 RIU that is the highest yet reported for LSPR sensing in a single nanostructure.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr02201jDOI Listing

Publication Analysis

Top Keywords

refractive sensor
8
plasmonic gap
8
gap mode
8
high-performance refractive
4
sensor single
4
single nanoplate-on-mirror
4
nanoplate-on-mirror nanocavity
4
nanocavity refractive
4
refractive sensors
4
sensors based
4

Similar Publications

A Refractive Index-Based Dual-Band Metamaterial Sensor Design and Analysis for Biomedical Sensing Applications.

Sensors (Basel)

January 2025

Department of Electronics and Communication Engineering, SRM University, Guntur 522240, Andhra Pradesh, India.

We propose herein a metamaterial (MM) dual-band THz sensor for various biomedical sensing applications. An MM is a material engineered to have a particular property that is rarely observed in naturally occurring materials with an aperiodic subwavelength arrangement. MM properties across a wide range of frequencies, like high sensitivity and quality factors, remain challenging to obtain.

View Article and Find Full Text PDF

Synthesized 3,4-Diaminothieno[2,3-b]thiophene-2,5-dicarbohydrazide (DTT) Schiff base derivatives newly were synthesized by attaching with different aldehydes, deposited in thin film form by thermal evaporation technique, and characterized by UV-Visible-NIR spectroscopy, FT-IR, NMR, and elemental analysis. It is revealed that compound 4 has the highest absorption peak intensity at 586 nm. The allied absorption, dielectric, and dispersion parameters have been calculated and discussed.

View Article and Find Full Text PDF

Fiber Optic Micro-Hole Salinity Sensor Based on Femtosecond Laser Processing.

Nanomaterials (Basel)

January 2025

School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, China.

This study presents a novel reflective fiber Fabry-Perot (F-P) salinity sensor. The sensor employs a femtosecond laser to fabricate an open liquid cavity, facilitating the unobstructed ingress and egress of the liquid, thereby enabling the direct involvement of the liquid in light transmission. Variations in the refractive index of the liquid induce corresponding changes in the effective refractive index of the optical path, which subsequently influences the output spectrum.

View Article and Find Full Text PDF

Due to their high refractive index, record optical anisotropy and a set of excitonic transitions in visible range at a room temperature, transition metal dichalcogenides have gained much attention. Here, we adapted a femtosecond laser ablation for the synthesis of WSe nanoparticles (NPs) with diameters from 5 to 150 nm, which conserve the crystalline structure of the original bulk crystal. This method was chosen due to its inherently substrate-additive-free nature and a high output level.

View Article and Find Full Text PDF

Sensitive, rapid and label-free biochemical sensors are needed for many applications. In this protocol, we describe biochemical detection using FLOWER (frequency locked optical whispering evanescent resonator)-a technique that we have used to detect single protein molecules in aqueous solution as well as exosomes, ribosomes and low part-per-trillion concentrations of volatile organic compounds. Whispering gallery mode microtoroid resonators confine light for extended time periods (hundreds of nanoseconds).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!