Energy upconversion via optical processes in semiconductor nanowires (NWs) is attractive for a variety of applications in nano-optoelectronics and nanophotonics. One of the main challenges is to achieve a high upconversion efficiency and, thus, a wide dynamic range of device performance, allowing efficient upconversion even under low excitation power. Here, we demonstrate that the efficiency of energy upconversion via two-photon absorption (TPA) can be drastically enhanced in core/shell NW heterostructures designed to provide a real intermediate TPA step via the band states of the narrow-bandgap region with a long carrier lifetime, fulfilling all the necessary requirements for high-efficiency two-step TPA. We show that, in radial GaAs(P)/GaNAs(P) core/shell NW heterostructures, the upconversion efficiency increases by 500 times as compared with that of the constituent materials, even under an excitation power as low as 100 mW/cm that is comparable to the 1 sun illumination. The upconversion efficiency can be further improved by 8 times through engineering the electric-field distribution of the excitation light inside the NWs so that light absorption is maximized within the desired region of the heterostructure. This work demonstrates the effectiveness of our approach in providing efficient photon upconversion by exploring core/shell NW heterostructures, yielding an upconversion efficiency being among the highest reported in semiconductor nanostructures. Furthermore, our work provides design guidelines for enhancing efficiency of energy upconversion in NW heterostructures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413407PMC
http://dx.doi.org/10.1021/acsnano.2c04287DOI Listing

Publication Analysis

Top Keywords

upconversion efficiency
16
energy upconversion
12
core/shell heterostructures
12
upconversion
10
semiconductor nanowires
8
efficient photon
8
photon upconversion
8
excitation power
8
efficiency energy
8
efficiency
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!