The interaction between nanoarchitectonic fullerenes and cells is essential for their applications in the biological field. Herein we reported the preparation and investigation of the function of different types of water-dispersible self-assembled fullerenes. The hydrophobic self-assembled fullerenes were either surface-modified or chemically etched to become water dispersible. Different types of fullerenes were then examined for their effects on the behavior of neural stem cells (NSCs). Our results indicated that only the hydrophilic fullerene nanotubes (FNTs, diameter ∼480 nm) created by chemically etching were endocytosed by NSCs, which showed a spindle-like morphology after the uptake. Meanwhile, the FNTs did not increase the reactive oxygen species (ROS) production of the cells. The expression levels of neural-related genes (CNPase and β-tubulin) were upregulated 1.5-fold in the presence of FNTs. The differentiation of NSCs depended on the size, shape, and surface functional group of various fullerenes. Besides, the addition of FNTs in a chitosan self-healing hydrogel did not influence the integrity, injectability, and self-healing properties of the composite hydrogel. These results revealed that FNTs induced the neural differentiation of NSCs in the composite hydrogel. The addition of FNTs at a low concentration (50 μg mL) was enough to create such effects in the composite hydrogel. The expression levels of the oligodendrocytic marker gene CNPase and the neuronal marker gene β-tubulin were increased remarkably by ∼14.5- and ∼8.4-fold, respectively, by the composite self-healing hydrogel containing 50 μg mL FNTs. The fullerene nanoarchitectured structures may have potential for use as nanovehicles and in neural tissue engineering in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2nr01817a | DOI Listing |
Int J Biol Macromol
December 2024
Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC, USA.
A chicken protein hydrogel (HG) was enzymatically prepared and blended with a carnauba wax-based oleogel (OG) to form bigels (BG) in ratios of 50:50 to 90:10. These systems were infused with thyme essential oil (TEO) at 0.5 %, 1 %, and 2 % v/v to harness its antioxidant properties.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, China; College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China. Electronic address:
Biocompatible and degradable hydrogels are extensively utilized for the delivery and controlled release of bioactive agents. Chitosan/squid ring teeth protein (SRT) hydrogels (CH/SRTs) cross-linked by genipin were fabricated, and their gel properties and structural characteristics were analyzed across varying SRT contents. Additionally, the curcumin-release behavior of curcumin-loaded CH/SRTs (Cur-CH/SRTs) was evaluated.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Petroleum Engineering, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran; Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Espoo, Finland.
This study investigates the use of acrylamide and Alyssum campestre seed gum (ACSG) to create hydrogel composites with enhanced electrical and mechanical properties by incorporating titanium carbide (TiC). The composites were analyzed through techniques such as FTIR, SEM, TEM, TGA, swelling, rheology, tensile, electrical conductivity, antibacterial, and MTT assays. XRD analysis showed that 0.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
Conductive hydrogels have great potential for applications in flexible wearable sensors due to the combination of biocompatibility, mechanical flexibility and electrical conductivity. However, constructing conductive hydrogels with high toughness, low hysteresis and skin-like modulus simultaneously remains challenging. In the present study, we prepared a tough and conductive polyacrylamide/pullulan/ammonium sulfate hydrogel with a semi-interpenetrating network.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
In this study, we developed a novel composite catalytic hydrogel, which integrates excellent mechanical properties, catalytic activity, and sensing performance. Discarded hydrogel sensors are reused as templates for in-situ generation of metal nanoparticles, and multifunctional hydrogels combining sensing and catalysis are realized. Polyacrylamide (PAM) provides a three-dimensional network structure, while octadecyl methacrylate (SMA) acts as a hydrophobic association center, enhancing the structural stability of the hydrogel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!