Organic Solar Cell With Efficiency Over 20% and V Exceeding 2.1 V Enabled by Tandem With All-Inorganic Perovskite and Thermal Annealing-Free Process.

Adv Sci (Weinh)

Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting, Department of Electrical & Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.

Published: October 2022

Organic solar cells (OSCs) based on polymer donor and non-fullerene acceptor achieve power conversion efficiency (PCE) more than 19% but their poor absorption below 550 nm restricts the harvesting of high-energy photons. In contrast, wide bandgap all-inorganic perovskites limit the absorption of low-energy photons and cause serious below bandgap loss. Therefore, a 2-terminal (2T) monolithic perovskite/organic tandem solar cell (TSC) incorporating wide bandgap CsPbI Br is demonstrated as front cell absorber and organic PM6:Y6 blend as rear cell absorber, to extend the absorption of OSCs into high-energy photon region. The perovskite sub-cell, featuring a sol-gel prepared ZnO/SnO bilayer electron transporting layer, renders a high open-circuit voltage (V ). The V is further enhanced by employing thermal annealing (TA)-free process in the fabrication of rear sub-cell, demonstrating a record high V of 2.116 V. The TA-free Ag/PFN-Br interface in organic sub-cell facilitates charge transport and restrains nonradiative recombination. Consequently, a remarkable PCE of 20.6% is achieved in monolithic 2T-TSCs configuration, which is higher than that of both reported single junction and tandem OSCs, demonstrating that tandem with wide bandgap all-inorganic perovskite is a promising strategy to improve the efficiency of OSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534952PMC
http://dx.doi.org/10.1002/advs.202200445DOI Listing

Publication Analysis

Top Keywords

wide bandgap
12
organic solar
8
solar cell
8
all-inorganic perovskite
8
bandgap all-inorganic
8
cell absorber
8
organic
4
cell
4
cell efficiency
4
efficiency 20%
4

Similar Publications

Fluorine-expedited nitridation of layered perovskite SrTiO for visible-light-driven photocatalytic overall water splitting.

Nat Commun

January 2025

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China.

Photocatalytic overall water splitting is a promising approach for a sustainable hydrogen provision using solar energy. For sufficient solar energy utilization, this reaction ought to be operated based on visible-light-active semiconductors, which is very challenging. In this work, an F-expedited nitridation strategy is applied to modify the wide-bandgap semiconductor SrTiO for visible-light-driven photocatalytic overall water splitting.

View Article and Find Full Text PDF

Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals.

View Article and Find Full Text PDF

Luminescence of the CsZrCl under High Pressure.

Inorg Chem

January 2025

Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw 02-668, Poland.

The photoluminescence (PL) and Raman spectra of the CsZrCl crystal over a wide range of pressures were studied in this work for the first time. PL measurements were performed up to 10 GPa, while the Raman spectra were measured up to 20 GPa. The PL data revealed a linear blue shift of the emission maximum from about 2.

View Article and Find Full Text PDF

Ultra-Flexible High-Linearity Silicon Nanomembrane Synaptic Transistor Array.

Adv Mater

January 2025

School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China.

The increasing demand for mobile artificial intelligence applications has elevated edge computing to a prominent research area. Silicon materials, renowned for their excellent electrical properties, are extensively utilized in traditional electronic devices. However, the development of silicon materials for flexible neuromorphic computing devices encounters great challenges.

View Article and Find Full Text PDF

Perovskite/silicon tandem solar cells (TSCs) are promising candidates for commercialization due to their outstanding power conversion efficiencies (PCEs). However, controlling the crystallization process and alleviating the phases/composition inhomogeneity represent a considerable challenge for perovskite layers grown on rough silicon substrates, ultimately limiting the efficiency and stability of TSC. Here, this study reports a "halide locking" strategy that simultaneously modulates the nucleation and crystal growth process of wide bandgap perovskites by introducing a multifunctional ammonium salt, thioacetylacetamide hydrochloride (TAACl), to bind with all types of cations and anions in the mixed halide perovskite precursor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!