A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Explainable AI and machine learning: performance evaluation and explainability of classifiers on educational data mining inspired career counseling. | LitMetric

Machine Learning concept learns from experiences, inferences and conceives complex queries. Machine learning techniques can be used to develop the educational framework which understands the inputs from students, parents and with intelligence generates the result. The framework integrates the features of Machine Learning (ML), Explainable AI (XAI) to analyze the educational factors which are helpful to students in achieving career placements and help students to opt for the right decision for their career growth. It is supposed to work like an expert system with decision support to figure out the problems, the way humans solve the problems by understanding, analyzing, and remembering. In this paper, the authors have proposed a framework for career counseling of students using ML and AI techniques. ML-based White and Black Box models analyze the educational dataset comprising of academic and employability attributes that are important for the job placements and skilling of the students. In the proposed framework, White Box and Black Box models get trained over an educational dataset taken in the study. The Recall and F-Measure score achieved by the Naive Bayes for performing predictions is 91.2% and 90.7% that is best compared to the score of Logistic Regression, Decision Tree, SVM, KNN, and Ensemble models taken in the study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287825PMC
http://dx.doi.org/10.1007/s10639-022-11221-2DOI Listing

Publication Analysis

Top Keywords

machine learning
16
career counseling
8
analyze educational
8
proposed framework
8
black box
8
box models
8
educational dataset
8
educational
5
students
5
explainable machine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!