Genome-wide methylation profiling reveals differentially methylated genes in blood DNA of small-cell lung cancer patients.

Precis Clin Med

Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ 85259, USA.

Published: September 2022

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9306013PMC
http://dx.doi.org/10.1093/pcmedi/pbac017DOI Listing

Publication Analysis

Top Keywords

genome-wide methylation
4
methylation profiling
4
profiling reveals
4
reveals differentially
4
differentially methylated
4
methylated genes
4
genes blood
4
blood dna
4
dna small-cell
4
small-cell lung
4

Similar Publications

DNA damage triggers heritable alterations in DNA methylation patterns in Arabidopsis.

Mol Plant

January 2025

State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Beijing Life Science Academy, Beijing 102299, China. Electronic address:

It has been hypothesized that DNA damage has the potential to induce DNA hypermethylation, contributing to carcinogenesis in mammals. However, there is no sufficient evidence to support that DNA damage can cause genome-wide DNA hypermethylation. Here, we demonstrated that DNA single-strand breaks with 3'-blocked ends (DNA 3'-blocks) can not only reinforce DNA methylation at normally methylated loci but also can induce DNA methylation at normally nonmethylated loci in plants.

View Article and Find Full Text PDF

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

Salt stress severely affects the growth and development of tomato. Strigolactones (SLs) and DNA methylation have been shown to be involved in the growth and development and response to salt stress in tomato. However, the regulation of SLs on DNA methylation in tomato under salt stress remains unclear.

View Article and Find Full Text PDF

Classification of Fibro-osseous Tumors in the Craniofacial Bones using DNA Methylation and Copy Number Alterations.

Mod Pathol

January 2025

Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands; Department of Pathology, Amsterdam University Medical Center, Amsterdam, the Netherlands. Electronic address:

Fibro-osseous tumors of the craniofacial bones are a heterogeneous group of lesions comprising cemento-osseous dysplasia (COD), cemento-ossifying fibroma (COF), juvenile trabecular ossifying fibroma (JTOF), psammomatoid ossifying fibroma (PsOF), fibrous dysplasia (FD), and low-grade osteosarcoma (LGOS) with overlapping clinicopathological features. However, their clinical behavior and treatment differ significantly, underlining the need for accurate diagnosis. Molecular diagnostic markers exist for subsets of these tumors, including GNAS mutations in FD, SATB2 fusions in PsOF, mutations involving the RAS-MAPK signaling pathway in COD, and MDM2 amplification in LGOS.

View Article and Find Full Text PDF

Cytosine Methylation Changes the Preferred Cis-Regulatory Configuration of Arabidopsis WUSCHEL-Related Homeobox 14.

Int J Mol Sci

January 2025

College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

The Arabidopsis transcription factor WUSCHEL-related homeobox 14 (AtWOX14) plays versatile roles in plant growth and development. However, its biochemical specificity of DNA binding, its genome-wide regulatory targets, and how these are affected by DNA methylation remain uncharacterized. To clarify the biochemistry underlying the regulatory function of AtWOX14, using the recently developed 5mC-incorporation strategy, this study performed SELEX and DAP-seq for AtWOX14 both in the presence and absence of cytosine methylation, systematically curated 65 motif models and identified 51,039 genomic binding sites for AtWOX14, and examined how 5mC affects DNA binding of AtWOX14 through bioinformatic analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!