Mixed sp. Z1 and sp. Z2 displayed an outstanding ammonia removal capacity than using a single strain. Metabolomics, proteomics, and RNA interference analysis demonstrated that the HNAD process was closely related to indole-acetic acid (IAA). Under the cocultured conditions, the excess IAA produced by Z2 could be absorbed by Z1 to compensate for the deficiency of IAA in the cells. IAA directly induced the expression of denitrifying enzymes and further activated the IAA metabolism level, thus greatly improving the nitrogen removal ability of Z1. In turn, nitrate and nitrite induced the expression of key enzymes in the IAA pathways. Moreover, Z1 and Z2 enhanced two IAA metabolic pathways in the process of mixed removal process. The activated hydrolysis-redox pathway in Z1 reduced the oxidative stress level, and the activated decarboxylation pathway in Z2 promoted intracellular energy metabolism, which indirectly promoted the process of HNAD in the system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304994 | PMC |
http://dx.doi.org/10.3389/fmicb.2022.929036 | DOI Listing |
Int J Mol Sci
December 2024
Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.
The lily is a globally popular cut flower, and managing dormancy in lily bulblets is essential for continuous, year-round production. While nitric oxide (NO) has been shown to influence seed dormancy and germination, its role in dormancy release in lilies was previously unconfirmed. In this study, we investigated the effects of NO on dormancy release in lily bulblets using SNP and c-PTIO.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
dominates the subalpine meadows in Shangri-La (Southwest China) owing to its potent allelopathic effects. However, the effects underlying its allelopathy require further characterization at the physiological and molecular levels. In this study, the physiological, biochemical, and metabolic mechanisms underlying allelopathy were investigated using as a receptor plant.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
In this study, the effect of spp. on the seed germination of cabbage, a cruciferous crop, was investigated. The effects of this strain on the seed germination vigor, bud growth and physiological characteristics of Chinese cabbage were analyzed by a seed coating method.
View Article and Find Full Text PDFProtoplasma
January 2025
Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
Creeping bentgrass (Agrostis stolonifera) is a cool-season perennial turfgrass and is frequently utilized in high-quality turf areas. However, a poor to moderate resistance to heat stress limits its promotion and utilization in transitional and worm climate zones. The objectives of the study were to assess the heat tolerance of 18 creeping bentgrass genotypes in the field and to further uncover differential mechanisms of heat tolerance between heat-tolerant and heat-sensitive genotypes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Environmental Protection and Dendrology, Institute of Horticultural Sciences, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland.
In 1973, Jaffe identified and characterized the phenomenon of thigmomorphogenesis, also referred to as mechanical stress (MS) or mechanical stimulation in plants. Previous studies on petunia plants demonstrated that MS significantly affects growth dynamics. As a response to MS, petunias exhibit increased levels of indole-3-acetic acid (IAA) oxidase and peroxidase, although the active transport of endogenous IAA remains unaffected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!