AI Article Synopsis

  • The study investigates how high-altitude environments, particularly in the Qinghai Tibet Plateau, influence the gut microbiomes of two groups of animals: Artiodactyla (even-toed ungulates) and Perissodactyla (odd-toed ungulates).
  • Researchers used 16S rRNA gene sequencing to analyze gut microbiome compositions at both high and low altitudes, finding that high-altitude ungulates had distinct microbiomes that differed significantly from those at lower altitudes.
  • The results suggested that while high altitude does not drive convergent evolution at the order level in ungulates, it does affect the diversity and specific microbial communities, highlighting unique adaptations of these animals to extreme environments

Article Abstract

Convergent evolution is an important sector of evolutionary biology. High-altitude environments are one of the extreme environments for animals, especially in the Qinghai Tibet Plateau, driving the inquiry of whether, under broader phylogeny, high-altitude factors drive the convergent evolution of Artiodactyla and Perissodactyla gut microbiomes. Therefore, we profiled the gut microbiome of Artiodactyla and Perissodactyla at high and low altitudes using 16S rRNA gene sequencing. According to cluster analyses, the gut microbiome compositions of high-altitude Artiodactyla and Perissodactyla were not grouped together and were far from those of low-altitude Artiodactyla and Perissodactyla. The Wilcoxon's test in high-altitude ungulates showed significantly higher Sobs and Shannon indices than in low-altitude ungulates. At the phylum level, Firmicutes and Patescibacteria were significantly enriched in the gut microbiomes of high-altitude ungulates, which also displayed a higher Firmicutes/Bacteroidetes value than low-altitude ungulates. At the family level, Ruminococcaceae, Christensenellaceae, and Saccharimonadaceae were significantly enriched in the gut microbiomes of high-altitude ungulates. Our results also indicated that the OH and FH groups shared two significantly enriched genera, and . These findings indicated that a high altitude cannot surpass the order level to drive the convergent evolution of ungulate gut microbiome composition but can drive the convergent evolution of alpha diversity and indicator microbiota in the gut microbiome of ungulates. Overall, this study provides a novel perspective for understanding the adaptation of ungulates to high-altitude environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301279PMC
http://dx.doi.org/10.3389/fmicb.2022.953234DOI Listing

Publication Analysis

Top Keywords

convergent evolution
20
gut microbiomes
16
artiodactyla perissodactyla
16
gut microbiome
16
drive convergent
12
high-altitude ungulates
12
high-altitude
8
evolution alpha
8
alpha diversity
8
diversity indicator
8

Similar Publications

Fuzzy logic applied to tunning mutation size in evolutionary algorithms.

Sci Rep

January 2025

Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, Łódź, 90-236, Poland.

Tuning of parameters is a very important but complex issue in the Evolutionary Algorithms' design. The paper discusses the new, based on the Fuzzy Logic concept of tuning mutation size in these algorithms. Data on evolution collected in prior generations are used to tune the size of mutations.

View Article and Find Full Text PDF

Large-scale rock burst disasters often occur in high-stress and deep-buried tunnels, due to challenges in accurate forecasting and the lack of clarity regarding the underlying mechanisms largely. This study combined on-site stress drilling tests, coupled finite and discrete element simulations, and theoretical calculations to examine unloading damage, rockburst evolution, and deformation failure of the high-stress and deep-buried Xuefengshan No.1 tunnel.

View Article and Find Full Text PDF

Argochampsa krebsi is a gavialoid crocodylian from the early Paleogene of North Africa. Based on its recovered phylogenetic relationship with South American species, it has been inferred to have been capable of transoceanic dispersal, but potential anatomical correlates for a marine lifestyle have yet to be identified. Based on CT scans of a mostly complete and well-preserved skull, we reconstruct the endocranial anatomy of Argochampsa and compare it to that of other gavialoids.

View Article and Find Full Text PDF

Nucleophilic aromatic substitutions (SAr) are amongst the most widely used processes in the pharmaceutical and agrochemical industries, allowing convergent assembly of complex molecules through C-C and C-X (X = O, N, S) bond formation. SAr reactions are typically carried out using forcing conditions, involving polar aprotic solvents, stoichiometric bases and elevated temperatures, which do not allow for control over reaction selectivity. Despite the importance of SAr chemistry, there are only a handful of selective catalytic methods reported that rely on small organic hydrogen-bonding or phase-transfer catalysts.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) electrosynthesis via the 2e oxygen reduction reaction (ORR) is considered as a cost-effective and safe alternative to the energy-intensive anthraquinone process. However, in more practical environments, namely, the use of neutral media and air-fed cathode environments, slow ORR kinetics and insufficient oxygen supply pose significant challenges to efficient HO production at high current densities. In this work, mesoporous B-doped carbons with novel curved BC active sites, synthesized via a carbon dioxide (CO) reduction using a pore-former agent, to simultaneously achieve excellent 2e ORR activity and improved mass transfer properties are introduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!