Vascular cognitive impairment (VCI) is the second most common cause of dementia. There is no treatment for VCI, in part due to a lack of understanding of the underlying mechanisms. The G-protein coupled receptor 39 (GPR39) is regulated by arachidonic acid (AA)-derived oxylipins that have been implicated in VCI. Furthermore, GPR39 is increased in microglia of post mortem human brains with VCI. Carriers of homozygous GPR39 SNPs have a higher burden of white matter hyperintensity, an MRI marker of VCI. We tested the hypothesis that GPR39 plays a protective role against high-fat diet (HFD)-induced cognitive impairment, in part mediated via oxylipins actions on cerebral blood flow (CBF) and neuroinflammation. Homozygous (KO) and heterozygous (Het) GPR39 knockout mice and wild-type (WT) littermates with and without HFD for 8 months were tested for cognitive performance using the novel object recognition (NOR) and the Morris water maze (MWM) tests, followed by CBF measurements using MRI. Brain tissue and plasma oxylipins were quantified with high-performance liquid chromatography coupled to mass spectrometry. Cytokines and chemokines were measured using a multiplex assay. KO mice, regardless of diet, swam further away from platform location in the MWM compared to WT and Het mice. In the NOR test, there were no effects of genotype or diet. Brain and plasma AA-derived oxylipins formed by 11- and 15-lipoxygenase (LOX), cyclooxygenase (COX) and non-enzymatically were increased by HFD and GPR39 deletion. Interleukin-10 (IL-10) was lower in KO mice on HFD than standard diet (STD), whereas IL-4, interferon γ-induced protein-10 (IP-10) and monocyte chemotactic protein-3 (MCP-3) were altered by diet in both WT and KO, but were not affected by genotype. Resting CBF was reduced in WT and KO mice on HFD, with no change in vasoreactivity. The deletion of GPR39 did not change CBF compared to WT mice on either STD or HFD. We conclude that GPR39 plays a role in spatial memory retention and protects against HFD-induced cognitive impairment in part by modulating inflammation and AA-derived oxylipins. The results indicate that GPR39 and oxylipin pathways play a role and may serve as therapeutic targets in VCI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298837PMC
http://dx.doi.org/10.3389/fncel.2022.893030DOI Listing

Publication Analysis

Top Keywords

cognitive impairment
16
aa-derived oxylipins
12
gpr39
10
cerebral blood
8
blood flow
8
high-fat diet
8
gpr39 plays
8
hfd-induced cognitive
8
mice hfd
8
oxylipins
6

Similar Publications

Objectives: Parkinson's disease (PD) is characterized by olfactory dysfunction (OD) and cognitive deficits at its early stages, yet the link between OD and cognitive deficits is also not well-understood. This study aims to examine the changes in the olfactory network associated with OD and their relationship with cognitive function in de novo PD patients.

Methods: A total of 116 drug-naïve PD patients and 51 healthy controls (HCs) were recruited for this study.

View Article and Find Full Text PDF

Radioactive brain injury, a severe complication ensuing from radiotherapy for head and neck malignancies, frequently manifests as cognitive impairment and substantially diminishes patients' quality of life. Despite its profound impact, the pathogenesis of this condition remains inadequately elucidated, and efficacious treatments are notably absent in clinical practice. Consequently, contemporary interventions predominantly focus on symptom alleviation rather than achieving a radical cure or reversing the injury process.

View Article and Find Full Text PDF

The origins of resting-state functional MRI (rsfMRI) signal fluctuations remain debated. Recent evidence shows coupling between global cortical rsfMRI signals and cerebrospinal fluid inflow in the fourth ventricle, increasing during sleep and decreasing with Alzheimer's disease (AD) progression, potentially reflecting brain clearance mechanisms. However, the existence of more complex brain-ventricle coupling modes and their relationship to cognitive decline remains unexplored.

View Article and Find Full Text PDF

Objectives: Sulforaphane (SFN), an isothiocyanate in cruciferous plants, has been reported to be effective in treating central nervous system diseases. However, how SFN protects the central nervous system needs further study. The aim of this study was to investigate the neuroprotective effect of SFN and its possible mechanism of action.

View Article and Find Full Text PDF

Background: Utility services for electricity, gas, heat, and hot water are necessities for everyday activities (e.g., lighting, cooking, and thermal safety).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!