Recent improvements in molecular treatment and gene therapy led to discovering novel cancer remedies. Antisense LNA GapmeRs is a state-of-the-art molecular research field for diagnosing and treating various cancer types. Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy defined by the rapid accumulation and malignant proliferation of immature myeloid progenitors. SOX12 is a new potential target for acute myeloid leukemia. In this study, SOX12 was blocked by antisense LNA GapmeRs (ALG) in human AML cell lines (KG1 and M07e). Cells were transfected with Gapmer anti- at 24, 48, and 72 h post-transfection. Transfection efficiency was assessed by a fluorescent microscope. Furthermore, evaluation of SOX12, TWIST1, CTNNB1, CASP3, and CASP9 expression was performed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Cell viability was determined by MTT assay. SOX12 expression was decreased remarkably in the ALG group. Moreover, SOX12 knockdown was associated with a decrease in and expression. Besides, downregulation of SOX12 in both cell lines could induce apoptosis, probably through upregulation of CASP3 and CASP9. The findings reveal that SOX12 knockdown could be a new target for reducing AML cells proliferation through antisense therapy approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273156PMC
http://dx.doi.org/10.22088/IJMCM.BUMS.10.4.249DOI Listing

Publication Analysis

Top Keywords

acute myeloid
12
myeloid leukemia
12
twist1 ctnnb1
8
antisense lna
8
lna gapmers
8
cell lines
8
casp3 casp9
8
sox12 knockdown
8
knockdown sox12
4
expression
4

Similar Publications

Background: Invasive fungal disease (IFD) poses significant challenges for critically ill patients with hematological malignancies (HMs). However, there is limited research on the clinical characteristics, risk factors, and outcomes of IFD within this population.

Method: A retrospective study was conducted at a tertiary center in China.

View Article and Find Full Text PDF

Development of an anti-LAIR1 antibody-drug conjugate for acute myeloid leukemia therapy.

Int J Biol Macromol

January 2025

Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China.

Acute myeloid leukemia (AML) is a severe blood cancer with an urgent need for novel therapies for refractory or relapsed patients. Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1), an immune suppressive receptor expressed on immune cells and AML blasts but minimally on hematopoietic stem cells (HSCs), represents a potential therapeutic target. But there has been limited research on therapies targeting LAIR1 for AML and no published reports on LAIR1 antibody-drug conjugate (ADC).

View Article and Find Full Text PDF

The clinical features and outcomes of elderly patients with acute myeloid leukemia: a real word research.

Clin Exp Med

January 2025

Medical Center of Hematology, Xinqiao Hospital of Army Medical University; Chongqing Key Laboratory of Hematology and Microenvironment; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, No.83 Xinqiao Main Street, Shapingba District, 400037, China.

The aim of this study was to investigate the clinical features and outcomes of elderly patients with acute myeloid leukemia (AML) from a real word research. The clinical data of 223 consecutive elderly patients (aged ≥ 60 years) who were newly diagnosed with AML at our medical center between July 2017 and June 2022, including their clinical characteristics, genetic mutations, and survival outcomes, were retrospectively analyzed. Among the 223 patients (median age 67 years), 180 (80.

View Article and Find Full Text PDF

Acute myeloid leukemia is a cancer involving uncontrolled proliferation of hematopoietic cells. Cutaneous involvement is referred to as leukemia cutis (LC). The histopathologic presentation of LC is variable, and may present with perivascular, periadnexal, dermal, or subcutaneous infiltrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!