A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning-based important weights-only transfer learning approach for COVID-19 CT-scan classification. | LitMetric

Deep learning-based important weights-only transfer learning approach for COVID-19 CT-scan classification.

Appl Intell (Dordr)

Department of Computer Science Engineering, Bennett University, Greater Noida, 201310 Uttar Pradesh India.

Published: July 2022

COVID-19 has become a pandemic for the entire world, and it has significantly affected the world economy. The importance of early detection and treatment of the infection cannot be overstated. The traditional diagnosis techniques take more time in detecting the infection. Although, numerous deep learning-based automated solutions have recently been developed in this regard, nevertheless, the limitation of computational and battery power in resource-constrained devices makes it difficult to deploy trained models for real-time inference. In this paper, to detect the presence of COVID-19 in CT-scan images, an important weights-only transfer learning method has been proposed for devices with limited runt-time resources. In the proposed method, the pre-trained models are made point-of-care devices friendly by pruning less important weight parameters of the model. The experiments were performed on two popular VGG16 and ResNet34 models and the empirical results showed that pruned ResNet34 model achieved 95.47% accuracy, 0.9216 sensitivity, 0.9567 F-score, and 0.9942 specificity with 41.96% fewer FLOPs and 20.64% fewer weight parameters on the SARS-CoV-2 CT-scan dataset. The results of our experiments showed that the proposed method significantly reduces the run-time resource requirements of the computationally intensive models and makes them ready to be utilized on the point-of-care devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9289654PMC
http://dx.doi.org/10.1007/s10489-022-03893-7DOI Listing

Publication Analysis

Top Keywords

deep learning-based
8
weights-only transfer
8
transfer learning
8
covid-19 ct-scan
8
proposed method
8
point-of-care devices
8
weight parameters
8
learning-based weights-only
4
learning approach
4
approach covid-19
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!