Although the role of hypoxia has been greatly explored and unveiled in glioblastoma (GBM), the mechanism of hypoxia-related long non-coding (lnc) RNAs has not been clearly understood. This study aims to reveal the crosstalk among hypoxia-related lncRNAs, tumor microenvironment (TME), and tumorigenesis for GBM. Gene expression profiles of GBM patients were used as a basis for identifying hypoxia-related lncRNAs. Unsupervised consensus clustering was conducted for classifying samples into different molecular subtypes. Gene set enrichment analysis (GSEA) was performed to analyze the enrichment of a series of genes or gene signatures. Three molecular subtypes were constructed based on eight identified hypoxia-related lncRNAs. Oncogenic pathways, such as epithelial mesenchymal transition (EMT), tumor necrosis factor-α (TNF-α) signaling, angiogenesis, hypoxia, P53 signaling, and glycolysis pathways, were significantly enriched in C1 subtype with poor overall survival. C1 subtype showed high immune infiltration and high expression of immune checkpoints. Furthermore, we identified 10 transcription factors (TFs) that were highly correlated with lncRNA-FAM66C. Three key lncRNAs (ADAMTS9-AS2, LINC00968, and LUCAT1) were screened as prognostic biomarkers for GBM. This study shed light on the important role of hypoxia-related lncRNAs for TME modulation and tumorigenesis in GBM. The eight identified hypoxia-related lncRNAs, especially FAM66C may serve as key regulators involving in hypoxia-related pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299378PMC
http://dx.doi.org/10.3389/fpubh.2022.898270DOI Listing

Publication Analysis

Top Keywords

hypoxia-related lncrnas
20
tumor microenvironment
8
hypoxia-related
8
hypoxia-related pathways
8
tumorigenesis gbm
8
molecular subtypes
8
identified hypoxia-related
8
lncrnas
6
gbm
5
lncrna-fam66c identified
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!