Revealing the mystery of persistent smell loss in Long COVID patients.

Int J Biol Sci

Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.

Published: July 2022

COVID-19 is hopefully approaching its end in many countries as herd immunity develops and weaker strains of SARS-CoV-2 dominate. However, a new concern occurs over the long-term effects of COVID-19, collectively called "Long COVID", as some symptoms of the nervous system last even after patients recover from COVID-19. This review focuses on studies of anosmia, , impairment of smell, which is the most common sensory defect during the disease course and is caused by olfactory dysfunctions. It remains mysterious how the olfactory functions are affected since the virus can't invade olfactory receptor neurons. We describe several leading hypotheses about the mystery in hope to provide insights into the pathophysiology and treatment strategies for anosmia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9305264PMC
http://dx.doi.org/10.7150/ijbs.73485DOI Listing

Publication Analysis

Top Keywords

revealing mystery
4
mystery persistent
4
persistent smell
4
smell loss
4
loss long
4
long covid
4
covid patients
4
patients covid-19
4
covid-19 hopefully
4
hopefully approaching
4

Similar Publications

Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells.

Genes Dev

December 2024

Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom

The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.

View Article and Find Full Text PDF

Orchids constitute one of the most diverse families of angiosperms, yet their genome evolution and diversity remain unclear. Here we construct and analyse chromosome-scale de novo assembled genomes of 17 representative accessions spanning 12 sections in Dendrobium, one of the largest orchid genera. These accessions represent a broad spectrum of phenotypes, lineages and geographical distributions.

View Article and Find Full Text PDF

How novel structures emerge during evolution has long fascinated biologists. A dramatic example is how the diminutive bones of the mammalian middle ear arose from ancestral fish jawbones. In contrast, the evolutionary origin of the outer ear, another mammalian innovation, remains a mystery, in part because it is supported by non-mineralized elastic cartilage rarely recovered in fossils.

View Article and Find Full Text PDF

Homocystinuria is a disorder of methionine metabolism leading to abnormal accumulation of homocysteine and its metabolites in blood and urine. This condition presents with a wide range of cutaneous and systemic features. This case report focuses on the particular cutaneous finding of silvery hair in this patient and its examination under a microscope that reveals an unusual and not yet reported finding of melanin clumps.

View Article and Find Full Text PDF
Article Synopsis
  • Structural superlubricity (SSL) is a state of extremely low friction and wear between solid surfaces, providing a potential solution for reducing these factors in practical applications.
  • Recent research identifies that edge pinning significantly influences SSL friction, although understanding of its atomic-level nature was previously unclear.
  • The study reveals the atomic structure of disordered edges in microscale graphite and demonstrates that by using SiN caps to disconnect edges from the substrate, an ultra-low friction stress of 0.1 kPa or lower can be achieved.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!