A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Deep Learning and Handcrafted Based Computationally Intelligent Technique for Effective COVID-19 Detection from X-ray/CT-scan Imaging. | LitMetric

The world has witnessed dramatic changes because of the advent of COVID19 in the last few days of 2019. During the last more than two years, COVID-19 has badly affected the world in diverse ways. It has not only affected human health and mortality rate but also the economic condition on a global scale. There is an urgent need today to cope with this pandemic and its diverse effects. Medical imaging has revolutionized the treatment of various diseases during the last four decades. Automated detection and classification systems have proven to be of great assistance to the doctors and scientific community for the treatment of various diseases. In this paper, a novel framework for an efficient COVID-19 classification system is proposed which uses the hybrid feature extraction approach. After preprocessing image data, two types of features i.e., deep learning and handcrafted, are extracted. For Deep learning features, two pre-trained models namely ResNet101 and DenseNet201 are used. Handcrafted features are extracted using Weber Local Descriptor (WLD). The Excitation component of WLD is utilized and features are reduced using DCT. Features are extracted from both models, handcrafted features are fused, and significant features are selected using entropy. Experiments have proven the effectiveness of the proposed model. A comprehensive set of experiments have been performed and results are compared with the existing well-known methods. The proposed technique has performed better in terms of accuracy and time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294765PMC
http://dx.doi.org/10.1007/s10723-022-09615-0DOI Listing

Publication Analysis

Top Keywords

deep learning
12
learning handcrafted
8
treatment diseases
8
handcrafted features
8
features extracted
8
features
7
handcrafted
4
handcrafted based
4
based computationally
4
computationally intelligent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!