Circ_0005918 Sponges miR-622 to Aggravate Intervertebral Disc Degeneration.

Front Cell Dev Biol

Department of Orthopaedics, the Hospital of Shunyi District, Beijing, China.

Published: July 2022

Intervertebral discdegeneration (IDD) is the most common cause of lower back pain, but the exact molecular mechanism of IDD is still unknown. Recently, studies have shown that circular RNAs (circRNAs) regulate diverse biological procedures such as cell metastasis, growth, metabolism, migration, apoptosis, and invasion. We demonstrated that IL-1β and TNF-α induced circ_0005918 expression in the NP cell, and circ_0005918 was overexpressed in the IDD group compared with the control group. Moreover, the upregulated expression of circ_0005918 was associated with disc degeneration degree. The elevated expression of circ_0005918 promoted cell growth and ECM degradation, and it induced secretion of inflammatory cytokines including IL-1β, IL-6, and TNF-α. Moreover, we found that circ_0005918 sponged miR-622 in the NP cell. In addition, the exposure to IL-1β and TNF-α suppressed the expression of miR-622, which was downregulated in the IDD group compared with the control group. Furthermore, the downregulated expression of miR-622 was associated with disc degeneration degree. The expression level of miR-622 was negatively associated with circ_0005918 expression in the IDD group. In conclusion, circ_0005918 regulated cell growth, ECM degradation, and secretion of inflammatory cytokines by regulating miR-622 expression. These data suggested that circ_0005918 played important roles in the development of IDD via sponging miR-622.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304550PMC
http://dx.doi.org/10.3389/fcell.2022.905213DOI Listing

Publication Analysis

Top Keywords

disc degeneration
12
idd group
12
circ_0005918
9
il-1β tnf-α
8
expression
8
circ_0005918 expression
8
group compared
8
compared control
8
control group
8
expression circ_0005918
8

Similar Publications

Background: To compare the effect of minimally invasive and open transforaminal lumbar interbody fusion (TLIF) approaches in fusing the L4-L5 segment and predicting the potential risk of adjacent segment degeneration (ASD).

Methods: A computed tomography scan image was processed and the three-dimensional model of the L1-L5 spine was reconstructed. The minimally invasive and Open TLIF finite element models were constructed.

View Article and Find Full Text PDF

Background: Cell-free regenerative strategies, such as notochordal cell (NC)-derived extracellular vesicles (EVs), are an attractive alternative in developing new therapies for intervertebral disc (IVD) degeneration. NC-EVs have been reported to elicit matrix anabolic effects on nucleus pulposus cells from degenerated IVDs cultured under basal conditions. However, the degenerative process is exacerbated by pro-inflammatory cytokines contributing to the vicious degenerative cycle.

View Article and Find Full Text PDF

Anterior cervical discectomy and fusion with self-locking standalone cage for the treatment of cervical degenerative disc disease in patients over 80 years.

J Orthop Traumatol

January 2025

Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.

Background: The need for anterior cervical discectomy and fusion (ACDF) for cervical degenerative disc disease (CDDD) will probably grow dramatically in the geriatric population. However, ACDF with self-locking standalone cages in patients over 80 years has not yet been investigated. This study aimed to assess the clinical and radiographic results in patients over 80 years treated by ACDF with self-locking standalone cages.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IVDD) is a leading cause of low back pain, primarily driven by inflammatory processes within the disc, particularly involving the infiltration and activity of macrophages. High Mobility Group Box 1 (HMGB1) has been identified as a crucial mediator in this inflammatory cascade, yet its precise role in macrophage-induced disc degeneration remains unclear. In this study, we employed a combination of in vivo and in vitro models, including genetically engineered mice with macrophage-specific overexpression of HMGB1, a rat model of IVDD, and cultured macrophages and nucleus pulposus cells (NPCs), to elucidate the role of HMGB1 in IVDD.

View Article and Find Full Text PDF

Baicalein-loaded porous silk fibroin microspheres modulate the senescence of nucleus pulposus cells through the NF-κB signaling pathway.

Colloids Surf B Biointerfaces

January 2025

The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou 510130, PR China; Guangzhou University of Chinese Medicine Postdoctoral Research Station, Guangzhou 510130, PR China. Electronic address:

Intervertebral disc degeneration (IVDD), an age-associated degenerative condition, significantly contributes to low back pain, thereby adversely affecting individual health and quality of life, while also imposing a substantial societal burden. Baicalein, a natural flavonoid derived from Scutellaria baicalensis Georgi, demonstrates a range of pharmacological activities, including antioxidant, anti-inflammatory, anti-tumor, and antibacterial properties. This positions it as a promising candidate for the treatment of IVDD through intradiscal drug delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!