The abundance of synthetic polymers has increased due to their uncontrolled utilization and disposal in the environment. The recalcitrant nature of plastics leads to accumulation and saturation in the environment, which is a matter of great concern. An exponential rise has been reported in plastic pollution during the corona pandemic because of PPE kits, gloves, and face masks made up of single-use plastics. The physicochemical methods have been employed to degrade synthetic polymers, but these methods have limited efficiency and cause the release of hazardous metabolites or by-products in the environment. Microbial species, isolated from landfills and dumpsites, have utilized plastics as the sole source of carbon, energy, and biomass production. The involvement of microbial strains in plastic degradation is evident as a substantial amount of mineralization has been observed. However, the complete removal of plastic could not be achieved, but it is still effective compared to the preexisting traditional methods. Therefore, microbial species and the enzymes involved in plastic waste degradation could be utilized as eco-friendly alternatives. Thus, microbial biodegradation approaches have a profound scope to cope with the plastic waste problem in a cost-effective and environmental-friendly manner. Further, microbial degradation can be optimized and combined with physicochemical methods to achieve substantial results. This review summarizes the different microbial species, their genes, biochemical pathways, and enzymes involved in plastic biodegradation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295099 | PMC |
http://dx.doi.org/10.1007/s11783-022-1596-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!