In recent years, electroencephalograph (EEG) studies on speech comprehension have been extended from a controlled paradigm to a natural paradigm. Under the hypothesis that the brain can be approximated as a linear time-invariant system, the neural response to natural speech has been investigated extensively using temporal response functions (TRFs). However, most studies have modeled TRFs in the electrode space, which is a mixture of brain sources and thus cannot fully reveal the functional mechanism underlying speech comprehension. In this paper, we propose methods for investigating the brain networks of natural speech comprehension using TRFs on the basis of EEG source reconstruction. We first propose a functional hyper-alignment method with an additive average method to reduce EEG noise. Then, we reconstruct neural sources within the brain based on the EEG signals to estimate TRFs from speech stimuli to source areas, and then investigate the brain networks in the neural source space on the basis of the community detection method. To evaluate TRF-based brain networks, EEG data were recorded in story listening tasks with normal speech and time-reversed speech. To obtain reliable structures of brain networks, we detected TRF-based communities from multiple scales. As a result, the proposed functional hyper-alignment method could effectively reduce the noise caused by individual settings in an EEG experiment and thus improve the accuracy of source reconstruction. The detected brain networks for normal speech comprehension were clearly distinctive from those for non-semantically driven (time-reversed speech) audio processing. Our result indicates that the proposed source TRFs can reflect the cognitive processing of spoken language and that the multi-scale community detection method is powerful for investigating brain networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301328PMC
http://dx.doi.org/10.3389/fncom.2022.919215DOI Listing

Publication Analysis

Top Keywords

brain networks
24
speech comprehension
20
natural speech
12
speech
10
brain
9
investigating brain
8
source reconstruction
8
functional hyper-alignment
8
hyper-alignment method
8
community detection
8

Similar Publications

Background: Changes in amyloid beta (Aβ) and phosphorylated tau brain levels are known to affect brain network organization but very little is known about how plasma markers can relate to these measures. We aimed to address the relationship between centrality network changes and two plasma pathology markers: phosphorylated tau at threonine 231 (p-tau231), a proxy for early Aβ change, and neurofilament light chain (Nfl), a marker of axonal degeneration.

Methods: One hundred and four cognitively unimpaired individuals were divided into a high pathology load (33 individuals; HP) group and a low pathology (71 individuals; LP) one.

View Article and Find Full Text PDF

Declines in physical and cognitive function are common in older adults. The circulating enzyme glycosylphosphatidylinositol (GPI)-specific phospholipase D1 (GPLD1) is elevated after exercise and has been associated with improved cognitive function when administered to aged mice. The purpose of this study was to investigate the relationship between GPLD1 and both cognitive function and brain structure/function in older adults with either high or low levels of physical activity.

View Article and Find Full Text PDF

Anhedonia, a core symptom of depression, has been defined as the loss of pleasure or lack of reactivity to pleasurable stimuli. Considering the relevance of alpha asymmetry to MDD and anhedonia, we explored the effect of dorsolateral prefrontal cortex (DLPFC) stimulation on frontal and posterior EEG alpha asymmetry (FAA and PAA, respectively), in this exploratory investigation. 61 participants randomly received sham (n = 11), bilateral (BS; n = 25), or unilateral stimulation (US; n = 25) of the DLPFC.

View Article and Find Full Text PDF

To investigate the clinicopathological and molecular genetic characteristics of intracranial mesenchymal tumors with FET::CREB fusion transcript. The clinical and imaging data of 6 cases of intracranial mesenchymal tumors with FET::CREB fusion from December 2018 to December 2023 were collected at the First Affiliated Hospital of Zhengzhou University. Their histological features, immunophenotype and molecular characteristics were analyzed.

View Article and Find Full Text PDF

Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal storage disorder leading to deleterious brain effects. While animal models suggested that MPS I severely affects white matter (WM), whole-brain diffusion tensor imaging (DTI) analysis was not performed due to MPS-related morphological abnormalities. 3T DTI data from 28 severe (MPS IH, treated with hematopoietic stem cell transplantation-HSCT), 16 attenuated MPS I patients (MPS IA) enrolled under the study protocol NCT01870375, and 27 healthy controls (HC) were analyzed using the free-water correction (FWC) method to resolve macrostructural partial volume effects and unravel differences in DTI metrics accounting for microstructural abnormalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!