Live cells, as reservoirs of biochemical reactions, can serve as amazing integrated chemical plants where precursor formation, nucleation and growth of nanocrystals, and functional assembly, can be carried out accurately following an artificial program. It is crucial but challenging to deliberately direct intracellular pathways to synthesize desired nanocrystals that cannot be produced naturally in cells, because the relevant reactions exist in different spatiotemporal dimensions and will never encounter each other spontaneously. This article summarizes the progress in the introduction of inorganic functional nanocrystals into live cells via the 'artificially regulated space-time-coupled live-cell synthesis' strategy. We also describe ingenious bio-applications of nanocrystal-cell systems, and quasi-biosynthesis strategies expanded from live-cell synthesis. Artificially regulated live-cell synthesis-which involves the interdisciplinary application of biology, chemistry, nanoscience and medicine-will enable researchers to better exploit the unanticipated potentialities of live cells and open up new directions in synthetic biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299112 | PMC |
http://dx.doi.org/10.1093/nsr/nwab162 | DOI Listing |
STAR Protoc
January 2025
Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan. Electronic address:
Understanding metabolic conditions related to glycolysis dependence is crucial for developing new treatments in cancer and regenerative medicine. This protocol details a method for using the live-cell metabolic analyzer (LiCellMo) to measure continuous changes in glucose consumption and lactate production in cultured human cells. LiCellMo provides real-time data on consecutive metabolic changes, improving measurements of these processes in various contexts, including in cancer and regenerative treatments.
View Article and Find Full Text PDFVet Microbiol
January 2025
Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham, Buenos Aires 1686, Argentina. Electronic address:
There is currently no commercial vaccine available against bovine tuberculosis (bTB). Mycobacterium bovis is the primary causative agent of bTB and is closely related to Mycobacterium tuberculosis, the pathogen responsible for human TB. Despite their limitations, mouse models are invaluable in early vaccine development due to their genetic diversity, cost-effectiveness, and the availability of research tools.
View Article and Find Full Text PDFHum Immunol
January 2025
Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. Electronic address:
Background: Recurrent pregnancy loss (RPL) remains a complex and challenging reproductive issue often associated with immunological abnormalities. This study investigates the immunomodulatory effects of intradermal lymphocyte therapy in RPL patients, exploring cellular, molecular, and cytokine changes, with specific attention to individuals with positive anti-thyroid peroxidase antibodies (Anti-TPO).
Methods: The study included 105 patients with RPL, divided into Anti-TPO positive RPL patients (n = 25), Anti-TPO negative RPL patients (n = 38), and RPL patients without lymphocyte immunotherapy (LIT) (n = 42).
Vet Immunol Immunopathol
January 2025
Group for Reproduction in Animals, Vaccinology & Infectious Diseases (GRAVID™), College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2771, United States.
Nucleic Acids Res
January 2025
SynVaccine Ltd, Ramat Hachayal, 3 Golda Meir Street, Science Park, Nes Ziona 7403648, Israel.
Many viruses of the Flaviviridae family, including the Zika virus (ZIKV), are human pathogens of significant public health concerns. Despite extensive research, there are currently no approved vaccines available for ZIKV and specifically no live-attenuated Zika vaccine. In this current study, we suggest a novel computational algorithm for generating live-attenuated vaccines via the introduction of silent mutation into regions that undergo selection for strong or weak local RNA folding or into regions that exhibit medium levels of sequence conservation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!