Headwater streams are known sources of methane (CH) to the atmosphere, but their contribution to global scale budgets remains poorly constrained. While efforts have been made to better understand diffusive fluxes of CH in streams, much less attention has been paid to ebullitive fluxes. We examine the temporal and spatial heterogeneity of CH ebullition from four lowland headwater streams in the temperate northeastern United States over a 2-yr period. Ebullition was observed in all monitored streams with an overall mean rate of 1.00 ± 0.23 mmol CH m d, ranging from 0.01 to 1.79 to mmol CH m d across streams. At biweekly timescales, rates of ebullition tended to increase with temperature. We observed a high degree of spatial heterogeneity in CH ebullition within and across streams. Yet, catchment land use was not a simple predictor of this heterogeneity, and instead patches scale variability weakly explained by water depth and sediment organic matter content and quality. Overall, our results support the prevalence of CH ebullition from streams and high levels of variability characteristic of this process. Our findings also highlight the need for robust temporal and spatial sampling of ebullition in lotic ecosystems to account for this high level of heterogeneity, where multiple sampling locations and times are necessary to accurately represent the mean rate of flux in a stream. The heterogeneity observed likely indicates a complex set of drivers affect CH ebullition from streams which must be considered when upscaling site measurements to larger spatial scales.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293065 | PMC |
http://dx.doi.org/10.1002/lno.11943 | DOI Listing |
Sci Total Environ
January 2025
Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Ecologia de Bentos, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil.
Understanding the patterns and mechanisms of biodiversity and its organization in space is essential for developing effective conservation strategies. Zeta diversity is an index of how taxa are shared by several sites, providing information on how ecological filters, including anthropogenic disturbances, influence biodiversity distribution. This study documents how anthropogenic disturbances at multiple spatial extents affect the spatial variation of benthic macroinvertebrate assemblages in lotic ecosystems.
View Article and Find Full Text PDFEcosystems
January 2025
Oregon State University, Department of Forest Ecosystems & Society, Corvallis, Oregon USA.
PLoS One
December 2024
Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, Tennessee, United States of America.
Monitoring the seasonal and diurnal variations in headwater stream metabolic regimes can provide critical information for understanding how ecosystems will respond to future environmental changes. In East Fork Creek, a headwater stream in middle Tennessee, week-long field campaigns were set up each month from May 2022 to May 2023 to collect stream metabolism estimators. In a more extensive field campaign from July 2-5 in 2022, diel signals were observed for temperature, pH, turbidity, and concentrations of Ca, Mg, K, Se, Fe, Ba, chloride, nitrate, DIC, DO, DOC, and total algae.
View Article and Find Full Text PDFSci Total Environ
December 2024
Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, Garmisch-Partenkirchen 82467, Germany.
Global fluvial ecosystems are important sources of greenhouse gases (CO, CH and NO) to the atmosphere, but their estimates are plagued by uncertainties due to unaccounted spatio-temporal variabilities in the fluxes. In this study, we tested the potential of modeling these variabilities using several machine learning models (ML) and three different input datasets (remotely sensed vegetation indices, in-situ water quality, and a combination of both) from 20 headwater catchments in Germany that differ in catchment land use and stream size. We also upscaled fluvial GHG fluxes for Germany using the best ML model and explored the role of catchment land use on the GHG spatial-temporal trends.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Great Lakes Institute of Environmental Research, University of Windsor, Windsor, Ontario, N9B 3P4, Canada. Electronic address:
The role of sediment microbial communities in regulating the loss and retention of nutrients in aquatic ecosystems has been increasingly recognised. However, in the Great Lakes, where nutrient mitigation focuses on harmful algal blooms, there are limited studies examining the fundamental role of water/sediment microbes in nutrient biogeochemical cycling. Little is understood in this regard considering the increase in anthropogenic pressure on in-stream biological processes impacting nutrient flux to lakes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!