AI Article Synopsis

  • Hepatitis B virus (HBV) remains a significant global health issue, linked to serious conditions like liver cirrhosis and cancer, with current treatments struggling to eliminate the viral cccDNA that leads to recurrence.
  • Current therapeutic goals focus on achieving a "functional cure," but the complexity of integrated HBV DNA and cccDNA makes this challenging.
  • Recent advances in understanding HBV biology have paved the way for potential therapeutic strategies targeting cccDNA through various methods, with some tools already moving into clinical trials for safety and efficacy assessment.

Article Abstract

Hepatitis B virus infection (HBV) is still a big health problem across the globe. It has been linked to the development of liver cirrhosis and hepatocellular carcinoma and can trigger different types of liver damage. Existing medicines are unable to disable covalently closed circular DNA (cccDNA), which may result in HBV persistence and recurrence. The current therapeutic goal is to achieve a functional cure, which means HBV-DNA no longer exists when treatment stops and the absence of HBsAg seroclearance. However, due to the presence of integrated HBV DNA and cccDNA functional treatment is now regarded to be difficult. In order to uncover pathways for potential therapeutic targets and identify medicines that could result in large rates of functional cure, a thorough understanding of the virus' biology is required. The proteins of the virus and episomal cccDNA are thought to be critical for the management and support of the HBV replication cycle as they interact directly with the host proteome to establish the best atmosphere for the virus while evading immune detection. The breakthroughs of host dependence factors, cccDNA transcription, epigenetic regulation, and immune-mediated breakdown have all produced significant progress in our understanding of cccDNA biology during the past decade. There are some strategies where cccDNA can be targeted either in a direct or indirect way and are presently at the point of discovery or preclinical or early clinical advancement. Editing of genomes, techniques targeting host dependence factors or epigenetic gene maintenance, nucleocapsid modulators, miRNA, siRNA, virion secretory inhibitors, and immune-mediated degradation are only a few examples. Though cccDNA approaches for direct targeting are still in the early stages of development, the assembly of capsid modulators and immune-reliant treatments have made it to the clinic. Clinical trials are currently being conducted to determine their efficiency and safety in patients, as well as their effect on viral cccDNA. The influence of recent breakthroughs in the development of new treatment techniques on cccDNA biology is also summarized in this review.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301636PMC
http://dx.doi.org/10.1021/acsomega.2c02216DOI Listing

Publication Analysis

Top Keywords

functional cure
12
cccdna
9
hepatitis virus
8
virus infection
8
dna cccdna
8
host dependence
8
dependence factors
8
cccdna biology
8
hbv
5
hbv cccdna-a
4

Similar Publications

Glioblastoma is immunologically "cold" and resistant to single-agent immune-checkpoint inhibitors (ICI). Our previous study of neoadjuvant pembrolizumab in surgically-accessible recurrent glioblastoma identified a molecular signature of response to ICI and suggested that neoadjuvant pembrolizumab may improve survival. To increase the power of this observation, we enrolled an additional 25 patients with a primary endpoint of evaluating the cell cycle gene signature associated with neoadjuvant pembrolizumab and performed bulk-RNA seq on resected tumor tissue (NCT02852655).

View Article and Find Full Text PDF

Since the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported from Wuhan, China, there has been a surge in scientific research to find a permanent cure for the disease. The main challenge in effective drug discovery is the continuously mutating nature of the SARS-CoV-2 virus. Thus, we have used the I-TASSER modeling to predict the structure of the SARS-CoV-2 viral envelope protein followed by combinatorial computational assessment to predict its putative potential small molecule inhibitors.

View Article and Find Full Text PDF

Metformin improves infection by strengthening macrophage antimicrobial functions.

Front Immunol

December 2024

Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.

Introduction: The incidence and prevalence of infections with non-tuberculous mycobacteria such as (Mav) are increasing. Prolonged drug regimens, inherent antibiotic resistance, and low cure rates underscore the need for improved treatment, which may be achieved by combining standard chemotherapy with drugs targeting the host immune system. Here, we examined if the diabetes type 2 drug metformin could improve Mav-infection.

View Article and Find Full Text PDF

Use of intrauterine dextrose as an alternative to systemic antibiotics for treatment of clinical metritis in dairy cattle: a microbiome perspective.

Front Vet Sci

December 2024

Intergraduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States.

Introduction: Clinical metritis (CM) has significant costs to dairy producers. Current treatment strategy involves systemic antibiotics; however, there is increasing concern about judicious antibiotic use. The study objective was to evaluate the effects of a non-antibiotic treatment vs.

View Article and Find Full Text PDF

Introduction: The differentiation between Alzheimer's disease (AD) and behavioral-variant frontotemporal dementia (bvFTD) can be complicated in the initial phase by shared symptoms and pathophysiological traits. Nevertheless, advancements in understanding AD's diverse pathobiology suggest the potential for establishing blood-based methods for differential diagnosis.

Methods: We devised a novel assay combining immunoprecipitation and mass spectrometry (IP-MS) to quantify Amyloid-beta (Aβ) peptides in plasma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!