Loss-of-function mutations in cause Loeys-Dietz syndrome type 3 (LDS3), a rare autosomal-dominant connective tissue disorder characterized by vascular pathology and skeletal abnormalities. Dysregulation of TGF-β/SMAD signaling is associated with abnormal skeletal features and bone fragility. To date, histomorphometric and ultrastructural characteristics of bone with mutations have not been reported in humans and the exact mechanism by which mutations cause the LDS3 phenotype is poorly understood. Here, we investigated bone histomorphometry and matrix mineralization in human bone with a mutation and explored the associated cellular defect in the TGF-β/SMAD pathway . The index patient had recurrent fractures, mild facial dysmorphism, arachnodactyly, pectus excavatum, chest asymmetry and kyphoscoliosis. Bone histomorphometry revealed markedly reduced cortical thickness (-68 %), trabecular thickness (-32 %), bone formation rate (-50 %) and delayed mineralization. Quantitative backscattered electron imaging demonstrated undermineralized bone matrix with increased heterogeneity in mineralization. The patient's mutation (c.200 T > G; p.I67S), when expressed from plasmid vectors in HEK293 cells, showed reduced phosphorylation and transcription factor activity compared to normal control and SMAD3 (p.S264Y), a gain-of-function mutation, somatic mosaicism of which causes melorheostosis. Transfection study of the patients' SMAD3 (p.I67S) mutation displayed lower luciferase reporter activity than normal SMAD3 and reduced expression of TGF-β signaling target genes. Patient fibroblasts also demonstrated impaired SMAD3 protein stability. Osteoclastogenic differentiation significantly increased and osteoclast-associated genes, including (encoding TRAP), , and , were up-regulated in CD14 (+) peripheral blood mononuclear cells (PBMCs) with the SMAD3 (p.I67S) mutation. Upregulation of osteoclastogenic genes was associated with decreased expression of TGF-β signaling target genes. We conclude that bone with the SMAD3 (p.I67S) mutation features reduced bone formation, and our functional studies revealed decreased SMAD3 activation and protein stability as well as increased osteoclastogenesis. These findings enhance our understanding of the pathophysiology of LDS3 caused by mutations. Emerging therapies targeting in the TGF-β/SMAD pathway also raise hope for treatment of LDS3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301510PMC
http://dx.doi.org/10.1016/j.bonr.2022.101603DOI Listing

Publication Analysis

Top Keywords

smad3 pi67s
12
pi67s mutation
12
bone
10
bone fragility
8
bone histomorphometry
8
tgf-β/smad pathway
8
bone formation
8
expression tgf-β
8
tgf-β signaling
8
signaling target
8

Similar Publications

The PWWP domain is a conserved motif unique to eukaryotes, playing a critical role in various cellular processes. Proteins containing the PWWP domain are typically found in chromatin, where they bind to DNA and histones in nucleosomes, facilitating chromatin-associated functions. Among these proteins, PWWP-domain containing proteins 2A and 2B (PWWP2A and PWWP2B), identified during the H2A interactome analysis, are DNA methyltransferase-related proteins, that are structurally disordered, except for their PWWP domain.

View Article and Find Full Text PDF

Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis.

Biomater Res

January 2025

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.

Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.

View Article and Find Full Text PDF

Sphingosylphosphorylcholine (SPC) is one of sphingomyelin-derived sphingolipids. SPC levels are increased in ascitic fluids of ovarian cancer patients and stratum corneum of atopic dermatitis (AD) patients. SPC has antitumor activity against several cancer cells by reducing proliferation and migration and increasing apoptosis .

View Article and Find Full Text PDF

Cardiac dysfunction and adverse consequences induced by cardiac fibrosis have been well documented. However, the cardiac fibrosis pathway in chronic heart failure (CHF) remains unclear, and it is therefore necessary to conduct further research for the sake of developing more effective therapeutic strategies for CHF. Some recent studies suggest that Pericarpium Trichosanthis (PT) may help improve the progression of fibrotic diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!