Genome size variation and evolutionary forces behind have been long pursued in flowering plants. The genus , consisting of approximately 25 wild species and two cultivated rice, harbors eleven extant genome types, six of which are diploid (AA, BB, CC, EE, FF, and GG) and five of which are tetraploid (BBCC, CCDD, HHJJ, HHKK, and KKLL). To obtain the most comprehensive knowledge of genome size variation in the genus , we performed flow cytometry experiments and estimated genome sizes of 166 accessions belonging to 16 non-AA genome species. -mer analyses were followed to verify the experimental results of the two accessions for each species. Our results showed that genome sizes largely varied fourfold in the genus , ranging from 279 Mb in (FF) to 1,203 Mb in (HHJJ). There was a 2-fold variation (ranging from 570 to 1,203 Mb) in genome size among the tetraploid species, while the diploid species had 3-fold variation, ranging from 279 Mb in (FF) to 905 Mb in (EE). The genome sizes of the tetraploid species were not always two times larger than those of the diploid species, and some diploid species even had larger genome sizes than those of tetraploids. Nevertheless, we found that genome sizes of newly formed allotetraploids (BBCC-) were almost equal to totaling genome sizes of their parental progenitors. Our results showed that the species belonging to the same genome types had similar genome sizes, while genome sizes exhibited a gradually decreased trend during the evolutionary process in the clade with AA, BB, CC, and EE genome types. Comparative genomic analyses further showed that the species with different rice genome types may had experienced dissimilar amplification histories of retrotransposons, resulting in remarkably different genome sizes. On the other hand, the closely related rice species may have experienced similar amplification history. We observed that the contents of transposable elements, long terminal repeats (LTR) retrotransposons, and particularly LTR/ retrotransposons varied largely but were significantly correlated with genome sizes. Therefore, this study demonstrated that LTR retrotransposons act as an active driver of genome size variation in the genus .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301470 | PMC |
http://dx.doi.org/10.3389/fpls.2022.921937 | DOI Listing |
BMC Plant Biol
January 2025
Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China.
Background: Tea-oil Camellia within the genus Camellia is renowned for its premium Camellia oil, often described as "Oriental olive oil". So far, only one partial mitochondrial genomes of Tea-oil Camellia have been published (no main Tea-oil Camellia cultivars), and comparative mitochondrial genomic studies of Camellia remain limited.
Results: In this study, we first reconstructed the entire mitochondrial genome of C.
Nat Chem Biol
January 2025
Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
Directed evolution in mammalian cells offers a powerful approach for advancing synthetic biology applications. However, existing mammalian-based directed evolution methods face substantial bottlenecks, including host genome interference, small library size and uncontrolled mutagenesis. Here we engineered an orthogonal alphaviral RNA replication system to evolve RNA-based devices, enabling RNA replicase-assisted continuous evolution (REPLACE) in proliferating mammalian cells.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
Background: White matter hyperintensities (WMH) are commonly observed on MRI in Alzheimer's disease (AD), but the molecular pathways underlying their relationships with the ATN biomarkers remain unclear. The aim of this study was to identify genetic variants that may modify the relationship between WMH and the ATN biomarkers.
Method: This genome-wide interaction study (GWIS) included individuals with AD, MCI, and normal cognition from ADNI (n = 1012).
Alzheimers Dement
December 2024
Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: Genome-wide association studies (GWAS) in Alzheimer's disease (AD) leveraging endophenotypes beyond case/control diagnosis, such as brain amyloid β pathology, have shown promise in identifying novel variants and understanding their potential functional impact. In this study, we leverage two brain amyloid β pathology measurement modalities, PET imaging and neuropathology, to address sample size limitations and to discover novel genetic drivers of disease.
Method: We conducted a meta-analysis on an amyloid PET imaging GWAS (N = 7,036, 35% amyloid positive, 53.
Alzheimers Dement
December 2024
Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: The Apolipoprotein E ε4 (APOE-ε4) allele is common in the population, but acts as the strongest genetic risk factor for late-onset Alzheimer's disease (AD). Despite the strength of the association, there is notable heterogeneity in the population including a strong modifying effect of genetic ancestry, with the APOE-ε4 allele showing a stronger association among individuals of European ancestry (EUR) compared to individuals of African ancestry (AFR). Given this heterogeneity, we sought to identify genetic modifiers of APOE-ε4 related to cognitive decline leveraging APOE-ε4 stratified and interaction genome-wide association analyses (GWAS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!