A diverse panel of wheat wild relative species was screened for resistance to Fusarium head blight (FHB) by spray inoculation. The great majority of species and accessions were susceptible or highly susceptible to FHB. Accessions of (P95-99.1-1), (9439957), and (531552) were highly resistant to FHB while additional accessions of were found to be susceptible to FHB. A combination of spray and point inoculation assessments over two consecutive seasons indicated that the resistance in accession P95-99.1-1 was due to enhanced resistance to initial infection of the fungus (type 1 resistance), and not to reduction in spread (type 2 resistance). A panel of wheat- (accession P95-99.1-1) introgression lines was screened for FHB resistance over two consecutive seasons using spray inoculation. Most introgression lines were similar in susceptibility to FHB as the wheat recipient (Paragon) but substitution of the terminal portion of chromosome 3BS of wheat with a similar-sized portion of 3G of significantly enhanced FHB resistance in the wheat background.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298666PMC
http://dx.doi.org/10.3389/fpls.2022.943211DOI Listing

Publication Analysis

Top Keywords

introgression lines
12
resistance
9
fusarium head
8
head blight
8
enhanced resistance
8
spray inoculation
8
accessions susceptible
8
susceptible fhb
8
consecutive seasons
8
accession p95-991-1
8

Similar Publications

A complete set of monosomic alien addition lines of Radish-Brassica oleracea exhibiting extensive variations was generated and well characterized for their chromosome behaviors and phenotypic characteristics. Monosomic alien addition lines (MAALs) are developed through interspecific hybridization, where an alien chromosome from a relative species is introduced into the genome of the recipient plant, serving as valuable genetic resources. In this study, an allotetraploid Raphanobrassica (RRCC, 2n = 36) was created from the interspecific hybridization between radish (Raphanus sativus, RR, 2n = 18) and Brassica oleracea (CC, 2n = 18).

View Article and Find Full Text PDF

Impact of structural variations and genome partitioning on bread wheat hybrid performance.

Funct Integr Genomics

January 2025

INRAE, Genetics, Diversity and Ecophysiology of Cereals, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.

The agronomical interest of hybrid wheat has long been a matter of debate. Compared to maize where hybrids have been successfully grown for decades, the mixed results obtained in wheat have been attributed at least partially to the lack of heterotic groups. The wheat genome is known to be strongly partitioned and characterized by numerous presence/absence variations and alien introgressions which have not been thoroughly considered in hybrid breeding.

View Article and Find Full Text PDF
Article Synopsis
  • Wheat is the second-most consumed staple food in India, and rising heat waves have highlighted the need for developing heat-tolerant wheat varieties to ensure food security.
  • A study used a mapping population of backcross introgression lines (BILs) derived from a heat-tolerant wild wheat relative to identify quantitative trait loci (QTLs) for traits related to terminal heat tolerance during optimal and heat-stressed conditions.
  • The research led to the discovery of 30 QTLs associated with heat tolerance traits on multiple chromosomes, providing valuable insights and potential markers for genomic breeding aimed at improving heat resilience in wheat plants.
View Article and Find Full Text PDF

Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp.

View Article and Find Full Text PDF

The bHLH transcription factor gene EGL3 accounts for the natural diversity in Arabidopsis fruit trichome pattern and morphology.

Plant Physiol

December 2024

Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain.

The number and distribution of trichomes, i.e., the trichome pattern, in different plant organs shows a conspicuous inter- and intraspecific diversity across Angiosperms that is presumably involved in adaptation to numerous environmental factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!