AI Article Synopsis

  • Canine atopic dermatitis involves skin barrier dysfunction that increases allergen sensitivity, leading to itching and inflammation.
  • The study investigated the expression of cannabinoid receptors in skin samples from healthy dogs and those with atopic dermatitis to understand their role in skin physiology and pathology.
  • Results showed that certain receptors, particularly CB2R, TRPA1, and 5-HT1aR, were significantly elevated in affected dogs, suggesting that the endocannabinoid system is involved in both the maintenance of healthy skin and the inflammation seen in atopic dermatitis.

Article Abstract

It is commonly accepted that some form of skin barrier dysfunction is present in canine atopic dermatitis (AD), one of the most common cutaneous pruritic inflammatory diseases of dogs. The impaired skin barrier function facilitates the penetration of allergens and subsequently stronger sensitization responses. The role of the endocannabinoid system (ECS) in the physiology and pathology of the skin is becoming increasingly established. It has been demonstrated that cannabinoid receptors are expressed in healthy and diseased skin and, based on current knowledge, it could be stated that cannabinoids are important mediators in the skin. The present study has been designed to immunohistochemically investigate the expression of the cannabinoid receptors type 1 (CB1R) and 2 (CB2R) and the cannabinoid-related receptors G protein-coupled receptor 55 (GPR55), transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), peroxisome proliferator-activated receptors alpha (PPARα), and serotoninergic receptor 1a (5-HT1aR) in keratinocytes of healthy dogs and of dogs with AD. Samples of skin tissues were collected from 7 healthy controls (CTRL-dogs) and from 8 dogs with AD (AD-dogs). The tissue samples were processed using an immunofluorescence assay with commercially available antibodies, and the immunolabelling of the receptors studied was quantitatively evaluated. The keratinocytes of the CTRL- and the AD-dogs showed immunoreactivity for all the receptors investigated with a significant upregulation of CB2R, TRPA1, and 5-HT1aR in the epidermis of the AD-dogs. The presence of cannabinoid and cannabinoid-related receptors in healthy keratinocytes suggested the possible role of the ECS in canine epidermal homeostasis while their overexpression in the inflamed tissues of the AD-dogs suggested the involvement of the ECS in the pathogenesis of this disease, having a possible role in the related skin inflammation and itching. Based on the present findings, the ECS could be considered a potential therapeutic target for dogs with AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9305491PMC
http://dx.doi.org/10.3389/fvets.2022.915896DOI Listing

Publication Analysis

Top Keywords

cannabinoid receptors
12
receptors
8
keratinocytes healthy
8
healthy dogs
8
dogs dogs
8
atopic dermatitis
8
skin barrier
8
cannabinoid-related receptors
8
dogs
7
skin
7

Similar Publications

The endocannabinoid system (ECS), regulating such processes as energy homeostasis, inflammation, and muscle function, centers around cannabinoid receptors, including CB1. These receptors are mainly located in the central nervous system and skeletal muscles. Hyperactivity of CB1 receptors is linked to metabolic disorders and chronic inflammation, highlighting their potential as therapeutic targets for muscle hypertrophy and metabolic health.

View Article and Find Full Text PDF

While benzodiazepines have been a mainstay of the pharmacotherapy of anxiety disorders, their short-term efficacy and risk of abuse have driven the exploration of alternative treatment approaches. The endocannabinoid (eCB) system has emerged as a key modulator of anxiety-related processes, with evidence suggesting dynamic interactions between the eCB system and the GABAergic system, the primary target of benzodiazepines. According to the existing literature, the activation of the cannabinoid receptors has been shown to exert anxiolytic effects, while their blockade or genetic deletion results in heightened anxiety-like responses.

View Article and Find Full Text PDF

2-arachnadoyl glycerol (2-AG) is one of the most common endocannabinoid molecules with anti-proliferative, cytotoxic, and pro-proliferative effects on different types of tumors. Typically, it induces cell death via cannabinoid receptor 1/2 (CB1/CB2)-linked ceramide production. In breast cancer, ceramide is counterbalanced by the sphingosine-1-phosphate, and thus the mechanisms of 2-AG influence on proliferation are poorly understood.

View Article and Find Full Text PDF

Navelina oranges () are rich in phytonutrients and bioactive compounds, especially flavonoids like hesperidin. This study investigates the anti-inflammatory and anti-fibrotic properties of hesperidin (HE) and a polyphenol mixture from Navelina oranges (OE) in human hepatocytes (Hepa-RG) and hepatic stellate cells (LX-2), in order to elucidate the underlying molecular mechanisms. In Hepa-RG cells, HE treatment increased expression of cannabinoid receptor 2 (CB2R), which was associated with down-regulation of p38 mitogen-activated protein kinases (p38 MAPK) but had minimal impact on cyclooxygenase-2 (COX-2) and transforming growth factor-β (TGF-β) levels.

View Article and Find Full Text PDF

Evidence indicates a bidirectional link between depressive symptoms and neuroinflammation. This study evaluated chronic cannabidiol (CBD) treatment effects in male and female rats subjected to the unpredictable chronic mild stress (UCMS) model of depression. We analyzed the gene expression related to neuroinflammation, cannabinoid signaling, estrogen receptors, and specific microRNAs in the ventromedial prefrontal cortex (vmPFC), CA1, and ventral subiculum (VS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!