Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This article introduces a systematic approach to synthesize linear parameter-varying (LPV) representations of nonlinear (NL) systems which are described by input affine state-space (SS) representations. The conversion approach results in LPV-SS representations in the observable canonical form. Based on the relative degree concept, first the SS description of a given NL representation is transformed to a normal form. In the SISO case, all nonlinearities of the original system are embedded into one NL function, which is factorized, based on a proposed algorithm, to construct an LPV representation of the original NL system. The overall procedure yields an LPV model in which the scheduling variable depends on the inputs and outputs of the system and their derivatives, achieving a practically applicable transformation of the model in case of low order derivatives. In addition, if the states of the NL model can be measured or estimated, then a modified procedure is proposed to provide LPV models scheduled by these states. Examples are included to demonstrate both approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293367 | PMC |
http://dx.doi.org/10.1002/rnc.5799 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!